Abid Ali , Kiryl Zhaliazka , Tianyi Dou , Aidan P. Holman , Dmitry Kurouski
{"title":"Saturation of fatty acids in phosphatidic acid uniquely alters transthyretin stability changing morphology and toxicity of amyloid fibrils","authors":"Abid Ali , Kiryl Zhaliazka , Tianyi Dou , Aidan P. Holman , Dmitry Kurouski","doi":"10.1016/j.chemphyslip.2023.105350","DOIUrl":null,"url":null,"abstract":"<div><p><span>Transthyretin (TTR) is a small, β-sheet-rich </span>tetrameric protein<span><span> that transports thyroid hormone thyroxine<span> and retinol. </span></span>Phospholipids<span>, including phosphatidic acid<span><span> (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear. In this study, we investigated the effect of saturation of fatty acids (FAs) in PA on the rate of TTR aggregation. We also reveal the extent to which PAs with different length and saturation of FAs altered the morphology and secondary structure of TTR aggregates. Our results showed that TTR aggregation in the equimolar presence of PAs with different length and saturation of FAs yielded structurally and morphologically different fibrils compared to those formed in the lipid-free environment. We also found that PAs drastically lowered the toxicity of TTR aggregates formed in the presence of this phospholipid. These results shed light on the role of PA in the stability of TTR and transthyretin </span>amyloidosis.</span></span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105350"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308423000725","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transthyretin (TTR) is a small, β-sheet-rich tetrameric protein that transports thyroid hormone thyroxine and retinol. Phospholipids, including phosphatidic acid (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear. In this study, we investigated the effect of saturation of fatty acids (FAs) in PA on the rate of TTR aggregation. We also reveal the extent to which PAs with different length and saturation of FAs altered the morphology and secondary structure of TTR aggregates. Our results showed that TTR aggregation in the equimolar presence of PAs with different length and saturation of FAs yielded structurally and morphologically different fibrils compared to those formed in the lipid-free environment. We also found that PAs drastically lowered the toxicity of TTR aggregates formed in the presence of this phospholipid. These results shed light on the role of PA in the stability of TTR and transthyretin amyloidosis.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.