{"title":"A Preliminary Study on the Effect of Deferoxamine on the Disruption of Bacterial Biofilms and Antimicrobial Resistance.","authors":"Aybala Temel, Zinnet Şevval Aksoyalp","doi":"10.4274/tjps.galenos.2023.23890","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Antiviral therapy approaches have become significant strategies to combat antibiotic resistance. Metal ions, particularly iron, play crucial roles in metabolic activities and virulence of bacteria. Loading iron into siderophore molecules could potentially circumvent antimicrobial resistance. This study aimed to evaluate the antibiofilm and antimicrobial effects of deferoxamine (DFO), an iron chelator and natural siderophore, on antibiotic susceptibility in clinical methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and carbapenem-resistant <i>Acinetobacter baumannii</i> (CRAB) isolates.</p><p><strong>Materials and methods: </strong>The <i>in vitro</i> antibacterial activity of DFO alone and in combination with vancomycin [VAN (30 μg)], amoxicillin (25 μg), colistin (10 μg), and imipenem (10 μg), was investigated against MRSA and CRAB isolates using the disk diffusion method. The spectrophotometric microplate method was used to detect the <i>in vitro</i> antibiofilm effect of DFO.</p><p><strong>Results: </strong>DFO exhibited a synergistic effect with VAN, amoxicillin, and colistin and significantly disrupted mature biofilm formation in MRSA and CRAB isolates. Notably, the antibiofilm effect of DFO was more pronounced in CRAB strains.</p><p><strong>Conclusion: </strong>These findings highlight the potential of DFO as an antibiofilm agent candidate and suggest that it can enhance the antibiotic susceptibility of certain microorganism species.</p>","PeriodicalId":23378,"journal":{"name":"Turkish Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/tjps.galenos.2023.23890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Antiviral therapy approaches have become significant strategies to combat antibiotic resistance. Metal ions, particularly iron, play crucial roles in metabolic activities and virulence of bacteria. Loading iron into siderophore molecules could potentially circumvent antimicrobial resistance. This study aimed to evaluate the antibiofilm and antimicrobial effects of deferoxamine (DFO), an iron chelator and natural siderophore, on antibiotic susceptibility in clinical methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Acinetobacter baumannii (CRAB) isolates.
Materials and methods: The in vitro antibacterial activity of DFO alone and in combination with vancomycin [VAN (30 μg)], amoxicillin (25 μg), colistin (10 μg), and imipenem (10 μg), was investigated against MRSA and CRAB isolates using the disk diffusion method. The spectrophotometric microplate method was used to detect the in vitro antibiofilm effect of DFO.
Results: DFO exhibited a synergistic effect with VAN, amoxicillin, and colistin and significantly disrupted mature biofilm formation in MRSA and CRAB isolates. Notably, the antibiofilm effect of DFO was more pronounced in CRAB strains.
Conclusion: These findings highlight the potential of DFO as an antibiofilm agent candidate and suggest that it can enhance the antibiotic susceptibility of certain microorganism species.