{"title":"Influence of the confining potential on the linewidth of a quantum well","authors":"Nguyen Dinh Hien","doi":"10.1016/j.spmi.2021.107068","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this theoretical study, we consider in detail the influence of the confining potential on the magneto-optical absorption linewidth (MOALW) of a </span>quantum well for both intersubband and intrasubband magneto-optical transitions. The projection operator method and the profile technique are used to calculate respectively the MO-absorption power and MOALW in both the semiparabolic, parabolic, and the rectangular confining potential quantum wells. The results obtained from the present study show that (i) the MOALW as functions of the structural, material, and external parameters include the confining potential frequency, the well width, the electron density, the temperature, and the magnetic field, as well as Landau level number; (ii) the larger contribution from intrasubband transitions to electron-phonon scattering compared with intersubband transitions for both three type of above confining potentials; (iii) the dependence of the MOALW on the above parameters is found to be the strongest in case of the square confining potential quantum well while it is the weakest in case of the semiparabolic confining potential quantum well for intersubband magneto-optical transitions, however, that for the parabolic confining potential is similar to the rectangular confining potential for intrasubband magneto-optical transitions. Our present calculations accord well with previous experimental studies.</p></div>","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"160 ","pages":"Article 107068"},"PeriodicalIF":3.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749603621002664","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 9
Abstract
In this theoretical study, we consider in detail the influence of the confining potential on the magneto-optical absorption linewidth (MOALW) of a quantum well for both intersubband and intrasubband magneto-optical transitions. The projection operator method and the profile technique are used to calculate respectively the MO-absorption power and MOALW in both the semiparabolic, parabolic, and the rectangular confining potential quantum wells. The results obtained from the present study show that (i) the MOALW as functions of the structural, material, and external parameters include the confining potential frequency, the well width, the electron density, the temperature, and the magnetic field, as well as Landau level number; (ii) the larger contribution from intrasubband transitions to electron-phonon scattering compared with intersubband transitions for both three type of above confining potentials; (iii) the dependence of the MOALW on the above parameters is found to be the strongest in case of the square confining potential quantum well while it is the weakest in case of the semiparabolic confining potential quantum well for intersubband magneto-optical transitions, however, that for the parabolic confining potential is similar to the rectangular confining potential for intrasubband magneto-optical transitions. Our present calculations accord well with previous experimental studies.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4