Monitoring silica core@shell nanoparticle-bacterial film interactions using the multi-parametric surface plasmon resonance technique.

Smart medicine Pub Date : 2023-06-26 eCollection Date: 2023-08-01 DOI:10.1002/SMMD.20230012
Rawand A Mustafa, Petteri Parkkila, Jessica M Rosenholm, Hongbo Zhang, Tapani Viitala
{"title":"Monitoring silica core@shell nanoparticle-bacterial film interactions using the multi-parametric surface plasmon resonance technique.","authors":"Rawand A Mustafa, Petteri Parkkila, Jessica M Rosenholm, Hongbo Zhang, Tapani Viitala","doi":"10.1002/SMMD.20230012","DOIUrl":null,"url":null,"abstract":"<p><p>In a healthcare setting, biofilms are a major source of infection and difficult to eradicate once formed. Nanoparticles (NPs) can be designed to effectively penetrate biofilms to more efficiently either deliver antibiotic drugs throughout the biofilm matrix or elicit inherent antibiofilm activity. Antibacterial cerium oxide (CeO<sub>2</sub>) NPs were employed as core material and coated with a mesoporous silica shell (MSN) to generate cerium oxide coated mesoporous silica NPs (CeO<sub>2</sub>@MSN). Detailed studies of NP-biofilm interactions are required to rationally develop NP platforms to prevent biofilm-related infections. This work developed and implemented a unique label-free analysis platform for the real-time monitoring of bacterial biofilm formation and then assessed the interactions of antibacterial NPs. An analysis platform which allows bacterial biofilms to grow and develop in situ in flow within the multi-parametric surface plasmon resonance (MP-SPR) instrument was established. This enabled simultaneous monitoring and detection of biofilm growth phases, structure, and interactions between differentially charged CeO<sub>2</sub>@MSNs and bacterial biofilms. Positively charged antibacterial NPs (polyethyleneimine functionalized CeO<sub>2</sub>@MSNs) were found to be the most efficient to penetrate the biofilm. The MP-SPR analysis platform was shown to be a powerful tool for monitoring biofilm development in real-time and to analyze biofilm properties and NP-biofilm interactions.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20230012"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20230012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a healthcare setting, biofilms are a major source of infection and difficult to eradicate once formed. Nanoparticles (NPs) can be designed to effectively penetrate biofilms to more efficiently either deliver antibiotic drugs throughout the biofilm matrix or elicit inherent antibiofilm activity. Antibacterial cerium oxide (CeO2) NPs were employed as core material and coated with a mesoporous silica shell (MSN) to generate cerium oxide coated mesoporous silica NPs (CeO2@MSN). Detailed studies of NP-biofilm interactions are required to rationally develop NP platforms to prevent biofilm-related infections. This work developed and implemented a unique label-free analysis platform for the real-time monitoring of bacterial biofilm formation and then assessed the interactions of antibacterial NPs. An analysis platform which allows bacterial biofilms to grow and develop in situ in flow within the multi-parametric surface plasmon resonance (MP-SPR) instrument was established. This enabled simultaneous monitoring and detection of biofilm growth phases, structure, and interactions between differentially charged CeO2@MSNs and bacterial biofilms. Positively charged antibacterial NPs (polyethyleneimine functionalized CeO2@MSNs) were found to be the most efficient to penetrate the biofilm. The MP-SPR analysis platform was shown to be a powerful tool for monitoring biofilm development in real-time and to analyze biofilm properties and NP-biofilm interactions.

监测二氧化硅core@shell使用多参数表面等离子体共振技术的纳米粒子-细菌膜相互作用
在医疗环境中,生物膜是感染的主要来源,一旦形成就很难根除。纳米粒子(NP)可以被设计成有效地穿透生物膜,从而更有效地将抗生素药物输送到整个生物膜基质中或引发固有的抗生物膜活性。以抗菌氧化铈(CeO2)纳米粒子为核心材料,用中孔二氧化硅外壳(MSN)包覆,制备了氧化铈包覆的中孔二氧化硅纳米粒子(CeO2@MSN)。需要对NP-生物膜相互作用进行详细研究,以合理开发NP平台,预防生物膜相关感染。这项工作开发并实现了一个独特的无标签分析平台,用于实时监测细菌生物膜的形成,然后评估抗菌NP的相互作用。建立了一个分析平台,允许细菌生物膜在多参数表面等离子体共振(MP‐SPR)仪器内原位流动生长和发育。这使得能够同时监测和检测生物膜的生长阶段、结构以及不同电荷之间的相互作用CeO2@MSNs以及细菌生物膜。带正电荷的抗菌NP(聚乙烯亚胺功能化CeO2@MSNs)被发现是穿透生物膜最有效的。MP‐SPR分析平台被证明是实时监测生物膜发育、分析生物膜特性和NP‐生物膜相互作用的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信