GENUS $1$ MINIMAL k-NOIDS AND SADDLE TOWERS IN $\mathbb {H}^2\times \mathbb {R}$

IF 1.1 2区 数学 Q1 MATHEMATICS
Jesús Castro-Infantes, J. M. Manzano
{"title":"GENUS \n$1$\n MINIMAL k-NOIDS AND SADDLE TOWERS IN \n$\\mathbb {H}^2\\times \\mathbb {R}$","authors":"Jesús Castro-Infantes, J. M. Manzano","doi":"10.1017/S1474748021000591","DOIUrl":null,"url":null,"abstract":"Abstract For each \n$k\\geq 3$\n , we construct a \n$1$\n -parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space \n$\\mathbb {H}^2\\times \\mathbb {R}$\n with genus \n$1$\n and k embedded ends asymptotic to vertical planes. We also obtain complete minimal surfaces with genus \n$1$\n and \n$2k$\n ends in the quotient of \n$\\mathbb {H}^2\\times \\mathbb {R}$\n by an arbitrary vertical translation. They all have dihedral symmetry with respect to k vertical planes, as well as finite total curvature \n$-4k\\pi $\n . Finally, we provide examples of complete properly Alexandrov-embedded minimal surfaces with finite total curvature with genus \n$1$\n in quotients of \n$\\mathbb {H}^2\\times \\mathbb {R}$\n by the action of a hyperbolic or parabolic translation.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"22 1","pages":"2155 - 2175"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1474748021000591","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract For each $k\geq 3$ , we construct a $1$ -parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb {H}^2\times \mathbb {R}$ with genus $1$ and k embedded ends asymptotic to vertical planes. We also obtain complete minimal surfaces with genus $1$ and $2k$ ends in the quotient of $\mathbb {H}^2\times \mathbb {R}$ by an arbitrary vertical translation. They all have dihedral symmetry with respect to k vertical planes, as well as finite total curvature $-4k\pi $ . Finally, we provide examples of complete properly Alexandrov-embedded minimal surfaces with finite total curvature with genus $1$ in quotients of $\mathbb {H}^2\times \mathbb {R}$ by the action of a hyperbolic or parabolic translation.
$\mathbb{H}^2\times\mathbb{R}中的属$1$最小k-NOIDS和鞍形塔$
摘要对于每个$k\geq3$,我们在黎曼乘积空间$\mathbb{H}^2 \times\mathbb{R}$中构造了一个完整的适当Alexandrov嵌入极小曲面的$1$参数族,其亏格为$1$,并且k个嵌入末端渐近于垂直平面。通过任意垂直平移,我们还获得了亏格为$1$和$2k$的完全极小曲面,其末端为$\mathbb{H}^2\times\mathbb{R}$的商。它们都具有相对于k个垂直平面的二面体对称性,以及有限的总曲率$-4k\pi$。最后,我们通过双曲或抛物平移的作用,给出了商为$\mathbb{H}^2\times\mathbb{R}$的亏格为$1$的具有有限总曲率的完全适当Alexandrov嵌入极小曲面的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信