Optimization of conventional solid-liquid extraction and microwave-assisted extraction of polyphenols and antioxidant compounds of blueberry (Vaccinium corymbosum) pomace through response surface methodology
{"title":"Optimization of conventional solid-liquid extraction and microwave-assisted extraction of polyphenols and antioxidant compounds of blueberry (Vaccinium corymbosum) pomace through response surface methodology","authors":"Sebastián Troncoso Mesa, Jennyfer Flórez-Méndez, Jéssica López, Rubén Bustos","doi":"10.3233/jbr-210007","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Blueberries contain large amounts of phenolic compounds as well as a higher concentration of anthocyanins than other berries. The peel of these fruits contains most of the anthocyanins and therefore pomace is left with the largest quantity of valuable phenolic compounds. Extraction is the most critical step to obtain such compounds. OBJECTIVE: This study aims to optimize the extraction of polyphenols and antioxidant compounds from blueberry pomace by solid-liquid extraction (SLE) and microwave-assisted extraction (MAE). METHODS: A Pareto chart was used to confirm the factor with the highest impact, response surface for analyzing the effect of extraction conditions on total phenol content (TPC) (through Folin-Ciocalteu), total anthocyanin content (TAC) (through differential pH), antioxidant capacity (AC) (through DPPH assay) and the Box-Behnken matrix to determine the optimal conditions for marc extraction with each method. RESULTS: Ethanol concentration is an impact factor for both methods, as well as irradiation method, radiation power for MAE and temperature for SLE. Regarding SLE and MAE extraction, under optimal conditions, a TCP content of 335.95 and 426.19 (mg GAE/100 g), TAC 272.69 and 389.64 (mg Cyn-3-glu/100 g), and CA 528.96 and 654.11 (mg TE/100 g) was obtained, respectively. CONCLUSIONS: The performance of phenolic compound extraction via MAE method is better than that of SLE.","PeriodicalId":15194,"journal":{"name":"Journal of Berry Research","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Berry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3233/jbr-210007","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
BACKGROUND: Blueberries contain large amounts of phenolic compounds as well as a higher concentration of anthocyanins than other berries. The peel of these fruits contains most of the anthocyanins and therefore pomace is left with the largest quantity of valuable phenolic compounds. Extraction is the most critical step to obtain such compounds. OBJECTIVE: This study aims to optimize the extraction of polyphenols and antioxidant compounds from blueberry pomace by solid-liquid extraction (SLE) and microwave-assisted extraction (MAE). METHODS: A Pareto chart was used to confirm the factor with the highest impact, response surface for analyzing the effect of extraction conditions on total phenol content (TPC) (through Folin-Ciocalteu), total anthocyanin content (TAC) (through differential pH), antioxidant capacity (AC) (through DPPH assay) and the Box-Behnken matrix to determine the optimal conditions for marc extraction with each method. RESULTS: Ethanol concentration is an impact factor for both methods, as well as irradiation method, radiation power for MAE and temperature for SLE. Regarding SLE and MAE extraction, under optimal conditions, a TCP content of 335.95 and 426.19 (mg GAE/100 g), TAC 272.69 and 389.64 (mg Cyn-3-glu/100 g), and CA 528.96 and 654.11 (mg TE/100 g) was obtained, respectively. CONCLUSIONS: The performance of phenolic compound extraction via MAE method is better than that of SLE.
期刊介绍:
The main objective of the Journal of Berry Research is to improve the knowledge about quality and production of berries to benefit health of the consumers and maintain profitable production using sustainable systems. The objective will be achieved by focusing on four main areas of research and development:
From genetics to variety evaluation
Nursery production systems and plant quality control
Plant physiology, biochemistry and molecular biology, as well as cultural management
Health for the consumer: components and factors affecting berries'' nutritional value
Specifically, the journal will cover berries (strawberry, raspberry, blackberry, blueberry, cranberry currants, etc.), as well as grapes and small soft fruit in general (e.g., kiwi fruit). It will publish research results covering all areas of plant breeding, including plant genetics, genomics, functional genomics, proteomics and metabolomics, plant physiology, plant pathology and plant development, as well as results dealing with the chemistry and biochemistry of bioactive compounds contained in such fruits and their possible role in human health. Contributions detailing possible pharmacological, medical or therapeutic use or dietary significance will be welcomed in addition to studies regarding biosafety issues of genetically modified plants.