Separating the shortwave and longwave components of greenhouse gas radiative forcing

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Keith P. Shine, Rachael E. Byrom, Ramiro Checa-Garcia
{"title":"Separating the shortwave and longwave components of greenhouse gas radiative forcing","authors":"Keith P. Shine,&nbsp;Rachael E. Byrom,&nbsp;Ramiro Checa-Garcia","doi":"10.1002/asl.1116","DOIUrl":null,"url":null,"abstract":"<p>Many important greenhouse gases (including water vapour, carbon dioxide, methane and ozone) absorb solar radiation. When gas concentrations change, this absorption exerts a radiative forcing that modifies the thermal infrared (‘longwave’) radiative forcing which is predominant for most gases (ozone being a major exception). The nature of the solar forcing differs from the longwave forcing in several ways. For example, the sign of the instantaneous solar forcing can differ between the tropopause and top-of-atmosphere, and the sign can differ between gases. In addition, a significant part of the solar forcing can be manifested in the longwave, following stratospheric temperature adjustment, which can counteract or enhance the instantaneous solar forcing. Here the nature of solar forcing is examined via a mixture of idealised and more realistic calculations, which consider the effect of perturbations in carbon dioxide, methane and ozone. An apparent contradiction in the sign of the solar forcing of carbon dioxide is resolved; it is shown to be negative, reducing the net carbon dioxide forcing by about 2.3%. The relevance of this work to the effective radiative forcing concept is also discussed.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"23 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1116","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1116","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Many important greenhouse gases (including water vapour, carbon dioxide, methane and ozone) absorb solar radiation. When gas concentrations change, this absorption exerts a radiative forcing that modifies the thermal infrared (‘longwave’) radiative forcing which is predominant for most gases (ozone being a major exception). The nature of the solar forcing differs from the longwave forcing in several ways. For example, the sign of the instantaneous solar forcing can differ between the tropopause and top-of-atmosphere, and the sign can differ between gases. In addition, a significant part of the solar forcing can be manifested in the longwave, following stratospheric temperature adjustment, which can counteract or enhance the instantaneous solar forcing. Here the nature of solar forcing is examined via a mixture of idealised and more realistic calculations, which consider the effect of perturbations in carbon dioxide, methane and ozone. An apparent contradiction in the sign of the solar forcing of carbon dioxide is resolved; it is shown to be negative, reducing the net carbon dioxide forcing by about 2.3%. The relevance of this work to the effective radiative forcing concept is also discussed.

Abstract Image

分离温室气体辐射强迫的短波和长波分量
许多重要的温室气体(包括水蒸气、二氧化碳、甲烷和臭氧)吸收太阳辐射。当气体浓度发生变化时,这种吸收会产生一种辐射强迫,改变热红外(“长波”)辐射强迫,而热红外辐射强迫对大多数气体(臭氧是一个主要例外)起主导作用。太阳强迫的性质在几个方面与长波强迫不同。例如,对流层顶和大气顶的瞬时太阳作用力的符号可能不同,气体之间的符号也可能不同。此外,平流层温度调整后的长波可以抵消或增强太阳瞬态强迫,从而在长波中表现出相当一部分的太阳强迫。在这里,太阳强迫的本质是通过理想化和更现实的计算的混合来检验的,这些计算考虑了二氧化碳、甲烷和臭氧中扰动的影响。太阳强迫二氧化碳的迹象中一个明显的矛盾得到了解决;它显示为负,使净二氧化碳强迫减少约2.3%。本文还讨论了这一工作与有效辐射强迫概念的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信