Adib Bin Rashid, Abu Saleh Nizam Uddin, Fahima Akter Azrin, Khondker Safin Kaosar Saad, Md. Enamul Hoque
{"title":"3D bioprinting in the era of 4th industrial revolution – insights, advanced applications, and future prospects","authors":"Adib Bin Rashid, Abu Saleh Nizam Uddin, Fahima Akter Azrin, Khondker Safin Kaosar Saad, Md. Enamul Hoque","doi":"10.1108/rpj-02-2023-0041","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe main objective of this paper is to illustrate an analytical view of different methods of 3D bioprinting, variations, formulations and characteristics of biomaterials. This review also aims to discover all the areas of applications and scopes of further improvement of 3D bioprinters in this era of the Fourth Industrial Revolution.\n\n\nDesign/methodology/approach\nThis paper reviewed a number of papers that carried evaluations of different 3D bioprinting methods with different biomaterials, using different pumps to print 3D scaffolds, living cells, tissue and organs. All the papers and articles are collected from different journals and conference papers from 2014 to 2022.\n\n\nFindings\nThis paper briefly explains how the concept of a 3D bioprinter was developed from a 3D printer and how it affects the biomedical field and helps to recover the lack of organ donors. It also gives a clear explanation of three basic processes and different strategies of these processes and the criteria of biomaterial selection. This paper gives insights into how 3D bioprinters can be assisted with machine learning to increase their scope of application.\n\n\nResearch limitations/implications\nThe chosen research approach may limit the generalizability of the research findings. As a result, researchers are encouraged to test the proposed hypotheses further.\n\n\nPractical implications\nThis paper includes implications for developing 3D bioprinters, developing biomaterials and increasing the printability of 3D bioprinters.\n\n\nOriginality/value\nThis paper addresses an identified need by investigating how to enable 3D bioprinting performance.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-02-2023-0041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
The main objective of this paper is to illustrate an analytical view of different methods of 3D bioprinting, variations, formulations and characteristics of biomaterials. This review also aims to discover all the areas of applications and scopes of further improvement of 3D bioprinters in this era of the Fourth Industrial Revolution.
Design/methodology/approach
This paper reviewed a number of papers that carried evaluations of different 3D bioprinting methods with different biomaterials, using different pumps to print 3D scaffolds, living cells, tissue and organs. All the papers and articles are collected from different journals and conference papers from 2014 to 2022.
Findings
This paper briefly explains how the concept of a 3D bioprinter was developed from a 3D printer and how it affects the biomedical field and helps to recover the lack of organ donors. It also gives a clear explanation of three basic processes and different strategies of these processes and the criteria of biomaterial selection. This paper gives insights into how 3D bioprinters can be assisted with machine learning to increase their scope of application.
Research limitations/implications
The chosen research approach may limit the generalizability of the research findings. As a result, researchers are encouraged to test the proposed hypotheses further.
Practical implications
This paper includes implications for developing 3D bioprinters, developing biomaterials and increasing the printability of 3D bioprinters.
Originality/value
This paper addresses an identified need by investigating how to enable 3D bioprinting performance.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation