B. H. Nayef, Siti Norul Huda Sheikh Abdullah, R. Sulaiman, Z. Alyasseri
{"title":"VARIANTS OF NEURAL NETWORKS: A REVIEW","authors":"B. H. Nayef, Siti Norul Huda Sheikh Abdullah, R. Sulaiman, Z. Alyasseri","doi":"10.22452/mjcs.vol35no2.5","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) techniques are part of artificial intelligence. ML involves imitating human behavior in solving different problems, such as object detection, text handwriting recognition, and image classification. Several techniques can be used in machine learning, such as Neural Networks (NN). The expansion in information technology enables researchers to collect large amounts of various data types. The challenging issue is to uncover neural network parameters suitable for object detection problems. Therefore, this paper presents a literature review of the latest proposed and developed components in neural network techniques to cope with different sizes and data types. A brief discussion is also introduced to demonstrate the different types of neural network parameters, such as activation functions, loss functions, and regularization methods. Moreover, this paper also uncovers parameter optimization methods and hyperparameters of the model, such as weight, the learning rate, and the number of iterations. From the literature, it is notable that choosing the activation function, loss function, number of neural network layers, and data size is the major factor affecting NN performance. Additionally, utilizing deep learning NN resulted in a significant improvement in model performance for a variety of issues, which became the researcher's attention.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol35no2.5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Machine learning (ML) techniques are part of artificial intelligence. ML involves imitating human behavior in solving different problems, such as object detection, text handwriting recognition, and image classification. Several techniques can be used in machine learning, such as Neural Networks (NN). The expansion in information technology enables researchers to collect large amounts of various data types. The challenging issue is to uncover neural network parameters suitable for object detection problems. Therefore, this paper presents a literature review of the latest proposed and developed components in neural network techniques to cope with different sizes and data types. A brief discussion is also introduced to demonstrate the different types of neural network parameters, such as activation functions, loss functions, and regularization methods. Moreover, this paper also uncovers parameter optimization methods and hyperparameters of the model, such as weight, the learning rate, and the number of iterations. From the literature, it is notable that choosing the activation function, loss function, number of neural network layers, and data size is the major factor affecting NN performance. Additionally, utilizing deep learning NN resulted in a significant improvement in model performance for a variety of issues, which became the researcher's attention.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus