Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra Ur,s(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{

Pub Date : 2023-05-22 DOI:10.21136/CMJ.2023.0193-22
Yu Wang, Xiao-Meng Li
{"title":"Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra Ur,s(sl2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{","authors":"Yu Wang, Xiao-Meng Li","doi":"10.21136/CMJ.2023.0193-22","DOIUrl":null,"url":null,"abstract":"Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${U_{r,s}}({\\mathfrak{s}\\mathfrak{l}_2})$$\\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0193-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_{r,s}}({\mathfrak{s}\mathfrak{l}_2})$$\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.
分享
查看原文
二参数量化包络代数Ur,s(sl2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\ usepackage{{amsfonts}\usecpackage{amssymb}\ucepackage{amsbsy}\usepackage{mathrsfs}\usecpacket{upgek}\setlength的有限维单模的湮灭理想{
设U为两参数量化包络代数Ur,s(sl2)\documentclass[12pt]{minimum}\usepackage{amsmath}\usepackage{wasysym}\usepackup{amsfonts}\usepackage{amssymb}\usepackage{asbssy}\usePack{mathrsfs}\usecpackage{upgeek}\setlength{\doddsedmargin}{-69pt}\ begin{document${U_{r,s}}{l}_2})$$\end{document}和F(U)是伴随作用下U的局部有限子代数。本文的目的是确定当rs−1不是单位根时F(U)的一些环理论性质。然后用生成元描述U的有限维单模的零化子理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信