{"title":"Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra Ur,s(sl2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{","authors":"Yu Wang, Xiao-Meng Li","doi":"10.21136/CMJ.2023.0193-22","DOIUrl":null,"url":null,"abstract":"Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${U_{r,s}}({\\mathfrak{s}\\mathfrak{l}_2})$$\\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0193-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let U be the two-parameter quantized enveloping algebra Ur,s(sl2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_{r,s}}({\mathfrak{s}\mathfrak{l}_2})$$\end{document} and F(U) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F(U) in the case when rs−1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.