Y. Zuo, Ying Yu, C. Zuo, Chuanlong Ning, Hao Liu, Zhiqing Gu, Q. Cao, C. Shen
{"title":"Low-Temperature Performance of Al-air Batteries","authors":"Y. Zuo, Ying Yu, C. Zuo, Chuanlong Ning, Hao Liu, Zhiqing Gu, Q. Cao, C. Shen","doi":"10.3390/EN12040612","DOIUrl":null,"url":null,"abstract":"High demand for batteries with a wide operating temperature range is on the rise with the development of wearable electronic devices, especially electric vehicles used in cold regions. Al–air batteries for electric vehicles have triggered worldwide interest due to their excellent theoretical energy density and safety. In this study, the low-temperature performance of Al–air batteries is tested for the first time. The effects of temperature and electrolyte concentrations on the discharge performance are then studied in detail. The discharge voltage is significantly influenced by the temperature. The low temperature could significantly depress the hydrogen evolution reaction of Al anodes. The Al–air batteries reached an extraordinary capacity of 2480 mAh/g, with 31 wt% KOH electrolyte at −15 °C. Moreover, the Al–air batteries at 0 °C exhibited higher discharge voltage and power densities than those at 15 and −15 °C. This study provides an important reference for future studies to improve low-temperature performance of Al–air batteries.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/EN12040612","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/EN12040612","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 13
Abstract
High demand for batteries with a wide operating temperature range is on the rise with the development of wearable electronic devices, especially electric vehicles used in cold regions. Al–air batteries for electric vehicles have triggered worldwide interest due to their excellent theoretical energy density and safety. In this study, the low-temperature performance of Al–air batteries is tested for the first time. The effects of temperature and electrolyte concentrations on the discharge performance are then studied in detail. The discharge voltage is significantly influenced by the temperature. The low temperature could significantly depress the hydrogen evolution reaction of Al anodes. The Al–air batteries reached an extraordinary capacity of 2480 mAh/g, with 31 wt% KOH electrolyte at −15 °C. Moreover, the Al–air batteries at 0 °C exhibited higher discharge voltage and power densities than those at 15 and −15 °C. This study provides an important reference for future studies to improve low-temperature performance of Al–air batteries.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.