In-mold electronics applications: the control of ink properties through the use of mixtures of electrically conductive pastes

IF 2.8 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Miliciani, G. Mendicino, M. DeMeuse
{"title":"In-mold electronics applications: the control of ink properties through the use of mixtures of electrically conductive pastes","authors":"M. Miliciani, G. Mendicino, M. DeMeuse","doi":"10.1088/2058-8585/acd129","DOIUrl":null,"url":null,"abstract":"Polymer thick films compatible with a thermoforming process are the key components to realize the next generation of human–machine interface and lighting with a 3D custom shape through an in-mold process. The purpose of this study is to demonstrate that a tailored combination of commercial pastes can offer the manufacturer more freedom in developing smart electronic devices. A four-point probe instrument was used to measure the resistivity of the printed circuit. We used the same formed printed sample to estimate the level of elongation under the thermoforming process due to the all-in-one screen design developed for the study. The important objective of this work was to form a paste which should withstand such operations without losing physical properties such as conductivity or adhesion or getting lines cracked.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acd129","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer thick films compatible with a thermoforming process are the key components to realize the next generation of human–machine interface and lighting with a 3D custom shape through an in-mold process. The purpose of this study is to demonstrate that a tailored combination of commercial pastes can offer the manufacturer more freedom in developing smart electronic devices. A four-point probe instrument was used to measure the resistivity of the printed circuit. We used the same formed printed sample to estimate the level of elongation under the thermoforming process due to the all-in-one screen design developed for the study. The important objective of this work was to form a paste which should withstand such operations without losing physical properties such as conductivity or adhesion or getting lines cracked.
模内电子应用:通过使用导电浆料混合物控制油墨性能
与热成型工艺兼容的聚合物厚膜是通过模内工艺实现下一代人机界面和3D定制形状照明的关键部件。这项研究的目的是证明,商业浆料的定制组合可以为制造商开发智能电子设备提供更多的自由。使用四点探针仪器测量印刷电路的电阻率。我们使用相同的成型印刷样品来估计由于为研究开发的一体式屏幕设计而在热成型工艺下的伸长率水平。这项工作的重要目标是形成一种糊状物,该糊状物应能承受这种操作,而不会失去导电性或附着力等物理特性或使线条破裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flexible and Printed Electronics
Flexible and Printed Electronics MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
9.70%
发文量
101
期刊介绍: Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信