Is there an analog of Nesterov acceleration for gradient-based MCMC?

IF 1.5 2区 数学 Q2 STATISTICS & PROBABILITY
Bernoulli Pub Date : 2021-05-01 DOI:10.3150/20-BEJ1297
Ma Yi-An, Niladri S. Chatterji, Xiang Cheng, Nicolas, Flammarion, P. Bartlett, Michael I. Jordan
{"title":"Is there an analog of Nesterov acceleration for gradient-based MCMC?","authors":"Ma Yi-An, Niladri S. Chatterji, Xiang Cheng, Nicolas, Flammarion, P. Bartlett, Michael I. Jordan","doi":"10.3150/20-BEJ1297","DOIUrl":null,"url":null,"abstract":"We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the space of probability measures, with Kullback–Leibler (KL) divergence as the objective functional. We show that an underdamped form of the Langevin algorithm performs accelerated gradient descent in this metric. To characterize the convergence of the algorithm, we construct a Lyapunov functional and exploit hypocoercivity of the underdamped Langevin algorithm. As an application, we show that accelerated rates can be obtained for a class of nonconvex functions with the Langevin algorithm.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":"27 1","pages":"1942-1992"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/20-BEJ1297","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 44

Abstract

We formulate gradient-based Markov chain Monte Carlo (MCMC) sampling as optimization on the space of probability measures, with Kullback–Leibler (KL) divergence as the objective functional. We show that an underdamped form of the Langevin algorithm performs accelerated gradient descent in this metric. To characterize the convergence of the algorithm, we construct a Lyapunov functional and exploit hypocoercivity of the underdamped Langevin algorithm. As an application, we show that accelerated rates can be obtained for a class of nonconvex functions with the Langevin algorithm.
对于基于梯度的MCMC,是否有Nesterov加速度的类似物?
我们将基于梯度的马尔可夫链蒙特卡罗(MCMC)采样公式化为概率测度空间上的优化,以Kullback–Leibler(KL)散度为目标函数。我们证明了Langevin算法的欠阻尼形式在该度量中执行加速梯度下降。为了表征该算法的收敛性,我们构造了一个李雅普诺夫函数,并利用了欠阻尼Langevin算法的次优性。作为一个应用,我们证明了用Langevin算法可以获得一类非凸函数的加速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信