Christoph Aurnhammer, Matthew W Crocker, Harm Brouwer
{"title":"Single-trial neurodynamics reveal N400 and P600 coupling in language comprehension.","authors":"Christoph Aurnhammer, Matthew W Crocker, Harm Brouwer","doi":"10.1007/s11571-023-09983-7","DOIUrl":null,"url":null,"abstract":"<p><p>Theories of the electrophysiology of language comprehension are mostly informed by event-related potential effects observed between condition averages. We here argue that a dissociation between competing effect-level explanations of event-related potentials can be achieved by turning to predictions and analyses at the single-trial level. Specifically, we examine the single-trial dynamics in event-related potential data that exhibited a biphasic N400-P600 effect pattern. A group of multi-stream models can explain biphasic effects by positing that each individual trial should induce either an N400 increase or a P600 increase, but not both. An alternative, single-stream account, Retrieval-Integration theory, explicitly predicts that N400 amplitude and P600 amplitude should be correlated at the single-trial level. In order to investigate the single-trial dynamics of the N400 and the P600, we apply a regression-based technique in which we quantify the extent to which N400 amplitudes are predictive of the electroencephalogram in the P600 time window. Our findings suggest that, indeed, N400 amplitudes and P600 amplitudes are inversely correlated within-trial and, hence, the N400 effect and the P600 effect in biphasic data are driven by the same trials. Critically, we demonstrate that this finding also extends to data which exhibited only monophasic effects between conditions. In sum, the observation that the N400 is inversely correlated with the P600 on a by-trial basis supports a single stream view, such as Retrieval-Integration theory, and is difficult to reconcile with the processing mechanisms proposed by multi-stream models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3309-3325"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09983-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Theories of the electrophysiology of language comprehension are mostly informed by event-related potential effects observed between condition averages. We here argue that a dissociation between competing effect-level explanations of event-related potentials can be achieved by turning to predictions and analyses at the single-trial level. Specifically, we examine the single-trial dynamics in event-related potential data that exhibited a biphasic N400-P600 effect pattern. A group of multi-stream models can explain biphasic effects by positing that each individual trial should induce either an N400 increase or a P600 increase, but not both. An alternative, single-stream account, Retrieval-Integration theory, explicitly predicts that N400 amplitude and P600 amplitude should be correlated at the single-trial level. In order to investigate the single-trial dynamics of the N400 and the P600, we apply a regression-based technique in which we quantify the extent to which N400 amplitudes are predictive of the electroencephalogram in the P600 time window. Our findings suggest that, indeed, N400 amplitudes and P600 amplitudes are inversely correlated within-trial and, hence, the N400 effect and the P600 effect in biphasic data are driven by the same trials. Critically, we demonstrate that this finding also extends to data which exhibited only monophasic effects between conditions. In sum, the observation that the N400 is inversely correlated with the P600 on a by-trial basis supports a single stream view, such as Retrieval-Integration theory, and is difficult to reconcile with the processing mechanisms proposed by multi-stream models.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.