{"title":"Numerical simulation model of reciprocating rod seal systems with axial wear texture on rod surface","authors":"Chong Xiang, Fei Guo, Xiaohong Jia, Yuming Wang","doi":"10.1002/ls.1643","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a simulation model of reciprocating rod seal systems when there is axial texture on the rod surface due to wear is studied. The model includes macroscopic solid mechanics analysis, microscopic contact mechanics analysis and fluid mechanics analysis, and on this basis, the change of surface pressure when the sealing ring fall into a texture is calculated by the micro-deformation mechanics analysis of the seal surface. Then, the stiffness matrix method is used to find the film thickness when the three pressures in the sealing area are in equilibrium, completing the fluid–solid coupling calculation. Combined with the above simulation process, the performance parameters of the sealing system such as leakage and friction can be obtained. Results show that axial texture will degrade sealing performance, which increases leakage and friction. The simulation results can quantitative characterise the influence of rod wear on sealing performance and provide some theoretical basis for the study of seal failure mechanism and prediction of seal life.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1643","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a simulation model of reciprocating rod seal systems when there is axial texture on the rod surface due to wear is studied. The model includes macroscopic solid mechanics analysis, microscopic contact mechanics analysis and fluid mechanics analysis, and on this basis, the change of surface pressure when the sealing ring fall into a texture is calculated by the micro-deformation mechanics analysis of the seal surface. Then, the stiffness matrix method is used to find the film thickness when the three pressures in the sealing area are in equilibrium, completing the fluid–solid coupling calculation. Combined with the above simulation process, the performance parameters of the sealing system such as leakage and friction can be obtained. Results show that axial texture will degrade sealing performance, which increases leakage and friction. The simulation results can quantitative characterise the influence of rod wear on sealing performance and provide some theoretical basis for the study of seal failure mechanism and prediction of seal life.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.