{"title":"Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles using Uraria picta Leaves Extract","authors":"S. Mishra, S. Kumavat","doi":"10.2174/1876402913666210902161849","DOIUrl":null,"url":null,"abstract":"\n\nThe rapid synthesis and antimicrobial activity of silver nanoparticles (AgNPs) synthesized using Uraria picta extract were investigated in this paper, and AgNPs were examined for antimicrobial activity against a variety of pathogenic organisms, including bacteria and fungi.\n\n\n\nGreen synthesis of AgNPs from Uraria picta leaves extract for antimicrobial evaluation against bacteria and fungi using MIC studies.\n\n\n\nThe AgNPs were created by treating an aqueous extract of Uraria picta leaves with silver nitrate (1 mM) solution and then synthesizing nanoparticles for various studies.\n\n\n\nThe Uraria picta leaves extract can be used to make green synthesis AgNPs effectively. The absorption band at 425 nm in the UV-Vis spectrum confirmed the synthesis of AgNPs. Silver nanoparticles show antimicrobial and antifungal action, according to MIC tests. This work gives a better understanding of how new antimicrobial and antifungal activity develops.\n\n\n\nAgNPs was synthesized from Uraria picta using a green, cost-effective, rapid, single-step, and simple process that, for the first time in this plant nanoparticles synthesis, showed antimicrobial activity. AgNPs were found to be spherical and oval, with average particle sizes ranging from 12.54 to 25.58 nm. The strong zone of inhibition of AgNPs against Salmonella Typhi, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus demonstrated their antimicrobial activity.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402913666210902161849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
The rapid synthesis and antimicrobial activity of silver nanoparticles (AgNPs) synthesized using Uraria picta extract were investigated in this paper, and AgNPs were examined for antimicrobial activity against a variety of pathogenic organisms, including bacteria and fungi.
Green synthesis of AgNPs from Uraria picta leaves extract for antimicrobial evaluation against bacteria and fungi using MIC studies.
The AgNPs were created by treating an aqueous extract of Uraria picta leaves with silver nitrate (1 mM) solution and then synthesizing nanoparticles for various studies.
The Uraria picta leaves extract can be used to make green synthesis AgNPs effectively. The absorption band at 425 nm in the UV-Vis spectrum confirmed the synthesis of AgNPs. Silver nanoparticles show antimicrobial and antifungal action, according to MIC tests. This work gives a better understanding of how new antimicrobial and antifungal activity develops.
AgNPs was synthesized from Uraria picta using a green, cost-effective, rapid, single-step, and simple process that, for the first time in this plant nanoparticles synthesis, showed antimicrobial activity. AgNPs were found to be spherical and oval, with average particle sizes ranging from 12.54 to 25.58 nm. The strong zone of inhibition of AgNPs against Salmonella Typhi, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus demonstrated their antimicrobial activity.