Meena Yadav, Rajat Arora, Monika Dhanda, Simran Ahlawat, Sachin Shoran, Suman Ahlawat, Satya Pal Nehra, Geeta Singh, Suman Lata
{"title":"Ppy/TiO2-SiO2 nanohybrid series: synthesis, characterization, photocatalytic activity, and antimicrobial potentiality","authors":"Meena Yadav, Rajat Arora, Monika Dhanda, Simran Ahlawat, Sachin Shoran, Suman Ahlawat, Satya Pal Nehra, Geeta Singh, Suman Lata","doi":"10.1007/s40201-023-00858-x","DOIUrl":null,"url":null,"abstract":"<div><p>A series of polypyrrole doped TiO<sub>2</sub>-SiO<sub>2</sub> nanohybrids (Ppy/TS NHs) were synthesized thru in-situ oxidation polymerization by varying weight ratio of pyrrole. The structural analysis of NHs were characterized by X-ray Diffraction (XRD) spectra, UV-visible (UV-Vis) spectra and X-ray Photoelectron spectra (XPS) confirmed synthesis of nanomaterials. Surface and morphological study done by adopting, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Transmittance Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed the homogenous distribution, nano range size formation and mesoporous nature of nanohybrids. Further, electrochemical behavior of synthesized NHs investigated by adopting Electrochemical Impedance Spectroscopy (EIS) showed good kinetic behaviour and electron transport tendency. The nanohybrids and precursors were examined for photocatalytic degradation of methylene blue (MB) dye and revealed enhanced degradation tendency for the NHs series photocatalysts. It was found that variation of pyrrole (0.1 to 0.3 g) to TS nanocomposites (TS Nc) increased the photocatalytic potential of TS Nc. The maximum photodegradation efficacy was found to be 90.48% in 120 min for Ppy/TS0.2 NHs under direct solar light. Additionally, Ppy/TS0.2 NHs performed appreciably towards antibacterial studies against some Gram-positive and Gram-negative deleterious bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Shigella flexneri microbes.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"239 - 254"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00858-x.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00858-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 5
Abstract
A series of polypyrrole doped TiO2-SiO2 nanohybrids (Ppy/TS NHs) were synthesized thru in-situ oxidation polymerization by varying weight ratio of pyrrole. The structural analysis of NHs were characterized by X-ray Diffraction (XRD) spectra, UV-visible (UV-Vis) spectra and X-ray Photoelectron spectra (XPS) confirmed synthesis of nanomaterials. Surface and morphological study done by adopting, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Transmittance Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed the homogenous distribution, nano range size formation and mesoporous nature of nanohybrids. Further, electrochemical behavior of synthesized NHs investigated by adopting Electrochemical Impedance Spectroscopy (EIS) showed good kinetic behaviour and electron transport tendency. The nanohybrids and precursors were examined for photocatalytic degradation of methylene blue (MB) dye and revealed enhanced degradation tendency for the NHs series photocatalysts. It was found that variation of pyrrole (0.1 to 0.3 g) to TS nanocomposites (TS Nc) increased the photocatalytic potential of TS Nc. The maximum photodegradation efficacy was found to be 90.48% in 120 min for Ppy/TS0.2 NHs under direct solar light. Additionally, Ppy/TS0.2 NHs performed appreciably towards antibacterial studies against some Gram-positive and Gram-negative deleterious bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Shigella flexneri microbes.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene