{"title":"Bayesian Functional Principal Components Analysis via Variational Message Passing with Multilevel Extensions","authors":"T. Nolan, J. Goldsmith, D. Ruppert","doi":"10.1214/23-ba1393","DOIUrl":null,"url":null,"abstract":"Functional principal components analysis is a popular tool for inference on functional data. Standard approaches rely on an eigendecomposition of a smoothed covariance surface in order to extract the orthonormal functions representing the major modes of variation. This approach can be a computationally intensive procedure, especially in the presence of large datasets with irregular observations. In this article, we develop a Bayesian approach, which aims to determine the Karhunen-Lo\\`eve decomposition directly without the need to smooth and estimate a covariance surface. More specifically, we develop a variational Bayesian algorithm via message passing over a factor graph, which is more commonly referred to as variational message passing. Message passing algorithms are a powerful tool for compartmentalizing the algebra and coding required for inference in hierarchical statistical models. Recently, there has been much focus on formulating variational inference algorithms in the message passing framework because it removes the need for rederiving approximate posterior density functions if there is a change to the model. Instead, model changes are handled by changing specific computational units, known as fragments, within the factor graph. We extend the notion of variational message passing to functional principal components analysis. Indeed, this is the first article to address a functional data model via variational message passing. Our approach introduces two new fragments that are necessary for Bayesian functional principal components analysis. We present the computational details, a set of simulations for assessing accuracy and speed and an application to United States temperature data.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ba1393","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Functional principal components analysis is a popular tool for inference on functional data. Standard approaches rely on an eigendecomposition of a smoothed covariance surface in order to extract the orthonormal functions representing the major modes of variation. This approach can be a computationally intensive procedure, especially in the presence of large datasets with irregular observations. In this article, we develop a Bayesian approach, which aims to determine the Karhunen-Lo\`eve decomposition directly without the need to smooth and estimate a covariance surface. More specifically, we develop a variational Bayesian algorithm via message passing over a factor graph, which is more commonly referred to as variational message passing. Message passing algorithms are a powerful tool for compartmentalizing the algebra and coding required for inference in hierarchical statistical models. Recently, there has been much focus on formulating variational inference algorithms in the message passing framework because it removes the need for rederiving approximate posterior density functions if there is a change to the model. Instead, model changes are handled by changing specific computational units, known as fragments, within the factor graph. We extend the notion of variational message passing to functional principal components analysis. Indeed, this is the first article to address a functional data model via variational message passing. Our approach introduces two new fragments that are necessary for Bayesian functional principal components analysis. We present the computational details, a set of simulations for assessing accuracy and speed and an application to United States temperature data.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.