The Planck constant of action and the Kibble balance

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
P.R. Bunker , Sergei N. Yurchenko
{"title":"The Planck constant of action and the Kibble balance","authors":"P.R. Bunker ,&nbsp;Sergei N. Yurchenko","doi":"10.1016/j.jms.2023.111794","DOIUrl":null,"url":null,"abstract":"<div><p>It has been shown previously (P. R. Bunker and Per Jensen, <em>J. Quant. Spectrosc. Radiat. Transf.</em>, <strong>243</strong> (2020) 106835) that if we choose angles to have dimension, we have to distinguish between the Planck constant <span><math><mi>h</mi></math></span>, having the dimension of <span><math><mrow><mi>action</mi><mspace></mspace><msup><mrow><mi>angle</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, and the Planck constant of action <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>, having the dimension of <span><math><mi>action</mi></math></span>. In the present paper, we show that a further implication that results from choosing angles to have dimension is that the Kibble balance equation relating the mass weighed to the Planck constant has to involve both of the distinct fundamental constants <span><math><mi>h</mi></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>. We derive that new equation here and show how it compares to the equation that is obtained if one chooses angles to be dimensionless as required in SI.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"395 ","pages":"Article 111794"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285223000590","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It has been shown previously (P. R. Bunker and Per Jensen, J. Quant. Spectrosc. Radiat. Transf., 243 (2020) 106835) that if we choose angles to have dimension, we have to distinguish between the Planck constant h, having the dimension of actionangle1, and the Planck constant of action hA, having the dimension of action. In the present paper, we show that a further implication that results from choosing angles to have dimension is that the Kibble balance equation relating the mass weighed to the Planck constant has to involve both of the distinct fundamental constants h and hA. We derive that new equation here and show how it compares to the equation that is obtained if one chooses angles to be dimensionless as required in SI.

Abstract Image

普朗克作用常数与Kibble平衡
这在以前已经被证明(P. R. Bunker和Per Jensen, J. Quant. Spectrosc)。Radiat。Transf., 243(2020) 106835),如果我们选择角度有维度,我们必须区分普朗克常数h,具有作用角- 1的维度,和普朗克常数hA,具有作用的维度。在这篇论文中,我们证明了选择具有维度的角度所产生的一个进一步的含义是,将质量称重到普朗克常数的基布尔平衡方程必须包含两个不同的基本常数h和hA。我们在这里推导了这个新方程,并展示了它与在SI中选择无量纲角度时得到的方程的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信