{"title":"Finite element simulation of permeable fault influence on a medium deep borehole thermal energy storage system","authors":"Lukas Seib, Bastian Welsch, Claire Bossennec, Matthis Frey, Ingo Sass","doi":"10.1186/s40517-022-00224-4","DOIUrl":null,"url":null,"abstract":"<div><p>Solutions for seasonal energy storage systems are essential for the reliable use of fluctuating renewable energy sources. As part of the research project SKEWS, a medium deep borehole thermal energy storage system with a depth of 750 m is under construction at Campus Lichtwiese in Darmstadt, Germany, to demonstrate this innovative technology. Prior to the design of SKEWS, the geological context in the surroundings of the project location was investigated using archive drilling data and groundwater measurements. The geologic survey suggests the assumption that the uppermost part of the intended storage domain is crosscut by a normal fault, which displaces the Permian rocks east of Darmstadt against granodioritic rocks of the Odenwald crystalline complex. A 3D finite-element numerical model was implemented to estimate the effect of the potentially higher hydraulic conductivity of the fault zone on the planned storage system. For this purpose, a storage operation over a time span of 30 years was simulated for different parametrizations of the fault zone. The simulations reveal a limited but visible heat removal from the storage region with increasing groundwater flow in the fault zone. However, the section of the borehole thermal energy storage system affected by the fault is minor compared to the total depth of the system. This only constitutes a minor impairment of the storage efficiency of approximately 3%. In total, the amount of heat extracted varies between 320.2 GWh and 326.2 GWh for the different models. These findings can be helpful for the planning and assessment of future medium deep borehole thermal energy storage systems in fractured and faulted crystalline settings by providing data about the potential impact of faults or large fractures crosscutting the storage system.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00224-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00224-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Solutions for seasonal energy storage systems are essential for the reliable use of fluctuating renewable energy sources. As part of the research project SKEWS, a medium deep borehole thermal energy storage system with a depth of 750 m is under construction at Campus Lichtwiese in Darmstadt, Germany, to demonstrate this innovative technology. Prior to the design of SKEWS, the geological context in the surroundings of the project location was investigated using archive drilling data and groundwater measurements. The geologic survey suggests the assumption that the uppermost part of the intended storage domain is crosscut by a normal fault, which displaces the Permian rocks east of Darmstadt against granodioritic rocks of the Odenwald crystalline complex. A 3D finite-element numerical model was implemented to estimate the effect of the potentially higher hydraulic conductivity of the fault zone on the planned storage system. For this purpose, a storage operation over a time span of 30 years was simulated for different parametrizations of the fault zone. The simulations reveal a limited but visible heat removal from the storage region with increasing groundwater flow in the fault zone. However, the section of the borehole thermal energy storage system affected by the fault is minor compared to the total depth of the system. This only constitutes a minor impairment of the storage efficiency of approximately 3%. In total, the amount of heat extracted varies between 320.2 GWh and 326.2 GWh for the different models. These findings can be helpful for the planning and assessment of future medium deep borehole thermal energy storage systems in fractured and faulted crystalline settings by providing data about the potential impact of faults or large fractures crosscutting the storage system.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.