Generalized manifolds, normal invariants, and 𝕃-homology

IF 0.7 3区 数学 Q2 MATHEMATICS
F. Hegenbarth, Dušan D. Repovš
{"title":"Generalized manifolds, normal invariants, and 𝕃-homology","authors":"F. Hegenbarth, Dušan D. Repovš","doi":"10.1017/S0013091521000316","DOIUrl":null,"url":null,"abstract":"Abstract Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\\mathcal {N}(X^{n}) \\to H^{st}_{n} ( X^{n}; \\mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\\,b): M^{n} \\to X^{n},$ and $H^{st}_{*} ( X^{n}; \\mathbb{E})$ denotes the Steenrod homology of the spectrum $\\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0013091521000316","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091521000316","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\mathcal {N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
广义流形,正规不变量,和𝕃-同源性
摘要设$X^{n}$是一个有向闭广义$n$-流形,$n\ge5$。在我们最近的论文中(Proc.Edinb.Math.Soc.(2)63(2020),编号2,597–607),我们构建了一个映射$t:\mathcal{N}(X^{N})\到H^{st}_{n} (X^{n};\mathbb{L}^{+})$,它扩展了当$X^{n}$是拓扑$n$流形时的法不变映射。这里,$\mathcal{N}(X^{N}^{st}_{*}(X^{n};\mathbb{E})$表示谱$\mathbb{E}$的Steenrod同调。一个重要而不平凡的问题出现了,映射$t$是否是双射的(注意,这在$X^{n}$是拓扑$n$-流形的情况下成立)。本文的目的是证明这个问题的答案是肯定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信