Introducing engineering undergraduates to CNC machine tool error compensation

IF 3.9 Q2 ENGINEERING, INDUSTRIAL
Abhijit Bhattacharyya , Tony L. Schmitz , Scott W.T. Payne , Palash Roy Choudhury , John K. Schueller
{"title":"Introducing engineering undergraduates to CNC machine tool error compensation","authors":"Abhijit Bhattacharyya ,&nbsp;Tony L. Schmitz ,&nbsp;Scott W.T. Payne ,&nbsp;Palash Roy Choudhury ,&nbsp;John K. Schueller","doi":"10.1016/j.aime.2022.100089","DOIUrl":null,"url":null,"abstract":"<div><p>For manually operated machine tools, the accuracy of the machine tool structure limits the accuracy of the parts produced. Such is not necessarily the case with computer numerically controlled (CNC) machine tools. This concept may not be immediately obvious to the engineering undergraduate. The method of error compensation is presented here in a manner that is accessible to the undergraduate engineering student. A homogeneous transformation matrix (HTM) model quantifies the geometric errors of a machine tool, which can be compensated for in software. The mathematical treatment is reduced to only essential elements to emphasize physical understanding. A key feature of this presentation is the application of the model to a three-axis milling machine. This illustration enables the undergraduate student to grasp the concept with ease. Another feature is that the entire model is developed from first principles, which does not require the student to invoke any empirical relationships. Three solved numerical problems illustrate the application of the model to practical situations. Information provided here may be used by the teacher as a template to introduce this subject at the undergraduate level.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912922000186/pdfft?md5=84b5f6732793258fb5389bd95c424871&pid=1-s2.0-S2666912922000186-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912922000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 3

Abstract

For manually operated machine tools, the accuracy of the machine tool structure limits the accuracy of the parts produced. Such is not necessarily the case with computer numerically controlled (CNC) machine tools. This concept may not be immediately obvious to the engineering undergraduate. The method of error compensation is presented here in a manner that is accessible to the undergraduate engineering student. A homogeneous transformation matrix (HTM) model quantifies the geometric errors of a machine tool, which can be compensated for in software. The mathematical treatment is reduced to only essential elements to emphasize physical understanding. A key feature of this presentation is the application of the model to a three-axis milling machine. This illustration enables the undergraduate student to grasp the concept with ease. Another feature is that the entire model is developed from first principles, which does not require the student to invoke any empirical relationships. Three solved numerical problems illustrate the application of the model to practical situations. Information provided here may be used by the teacher as a template to introduce this subject at the undergraduate level.

工程类本科生数控机床误差补偿介绍
对于手动操作的机床,机床结构的精度限制了所生产零件的精度。计算机数控(CNC)机床的情况不一定如此。对于工科本科生来说,这个概念可能不是很明显。误差补偿的方法是在这里提出的一种方式,是可访问的工程本科学生。齐次变换矩阵(HTM)模型量化了机床的几何误差,并用软件对其进行补偿。数学处理被简化为只有基本元素,以强调物理理解。本演示的一个关键特征是将该模型应用于三轴铣床。这个插图使本科生能够轻松地掌握这个概念。另一个特点是,整个模型是从第一性原理发展而来的,不需要学生援引任何经验关系。三个已解的数值问题说明了该模型在实际情况中的应用。这里提供的信息可以被老师用作模板,在本科阶段介绍这个主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信