{"title":"The panted cobordism groups of cusped hyperbolic 3-manifolds","authors":"Hongbin Sun","doi":"10.1112/topo.12255","DOIUrl":null,"url":null,"abstract":"<p>For any oriented cusped hyperbolic 3-manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, we study its <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-panted cobordism group, which is the abelian group generated by <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-good curves in <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> modulo the oriented boundaries of <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-good pants. In particular, we prove that for sufficiently small <math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon >0$</annotation>\n </semantics></math> and sufficiently large <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$R>0$</annotation>\n </semantics></math>, some modified version of the <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-panted cobordism group of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is isomorphic to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mtext>SO</mtext>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>;</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\text{SO}(M);\\mathbb {Z})$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12255","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For any oriented cusped hyperbolic 3-manifold , we study its -panted cobordism group, which is the abelian group generated by -good curves in modulo the oriented boundaries of -good pants. In particular, we prove that for sufficiently small and sufficiently large , some modified version of the -panted cobordism group of is isomorphic to .