The panted cobordism groups of cusped hyperbolic 3-manifolds

Pub Date : 2022-07-12 DOI:10.1112/topo.12255
Hongbin Sun
{"title":"The panted cobordism groups of cusped hyperbolic 3-manifolds","authors":"Hongbin Sun","doi":"10.1112/topo.12255","DOIUrl":null,"url":null,"abstract":"<p>For any oriented cusped hyperbolic 3-manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, we study its <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-panted cobordism group, which is the abelian group generated by <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-good curves in <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> modulo the oriented boundaries of <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-good pants. In particular, we prove that for sufficiently small <math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon &gt;0$</annotation>\n </semantics></math> and sufficiently large <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$R&gt;0$</annotation>\n </semantics></math>, some modified version of the <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\epsilon )$</annotation>\n </semantics></math>-panted cobordism group of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> is isomorphic to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mtext>SO</mtext>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>;</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_1(\\text{SO}(M);\\mathbb {Z})$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12255","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For any oriented cusped hyperbolic 3-manifold M $M$ , we study its ( R , ε ) $(R,\epsilon )$ -panted cobordism group, which is the abelian group generated by ( R , ε ) $(R,\epsilon )$ -good curves in M $M$ modulo the oriented boundaries of ( R , ε ) $(R,\epsilon )$ -good pants. In particular, we prove that for sufficiently small ε > 0 $\epsilon >0$ and sufficiently large R > 0 $R>0$ , some modified version of the ( R , ε ) $(R,\epsilon )$ -panted cobordism group of M $M$ is isomorphic to H 1 ( SO ( M ) ; Z ) $H_1(\text{SO}(M);\mathbb {Z})$ .

Abstract Image

分享
查看原文
顶角双曲3-流形的共轭群
对于任意有向双曲3流形M$ M$,我们研究了它的(R, ε)$ (R,\epsilon)$ -共轭群,它是由M$ M$中的(R, ε)$ (R,\epsilon)$ -good曲线模取(R)$的有向边界所生成的阿贝尔群,ε)$ (R,\epsilon)$ -好裤子。特别地,我们证明了当ε >0$ \ ε >0$和足够大的R >0$ R>0$,是(R)的修改版本,M$ M$的ε)$ (R,\ ε)$ -共轭群同构于h1 (SO (M);$H_1(\text{SO}(M);\mathbb {Z})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信