{"title":"Wireless stepper motor control and optimization based on robust control theory","authors":"Waleed Al-Azzawi","doi":"10.11591/IJRA.V10I2.PP144-148","DOIUrl":null,"url":null,"abstract":"Stepper motors are broadly utilized in actual systems, which are marked by non-linear parameters such as internal, external noises and uncertainties from wireless network. As well, a suitable controller is required when the problem is to track the target signal. In this paper, robust controller based on model reference are investigated to wireless control and optimize position and time in stepper motors. The core impression to build a robust controller is to use a model reference control system. Furthermore, simulations are implemented to control stepper motor position and time in two cases: first, when the wireless network without any delay and packet dropout. Second, uncertain equations when the wireless network with time delays and packet dropout. Simulation results demonstrate that proposed controller has achieved and enhanced the performance in tracking and robustness.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJRA.V10I2.PP144-148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Stepper motors are broadly utilized in actual systems, which are marked by non-linear parameters such as internal, external noises and uncertainties from wireless network. As well, a suitable controller is required when the problem is to track the target signal. In this paper, robust controller based on model reference are investigated to wireless control and optimize position and time in stepper motors. The core impression to build a robust controller is to use a model reference control system. Furthermore, simulations are implemented to control stepper motor position and time in two cases: first, when the wireless network without any delay and packet dropout. Second, uncertain equations when the wireless network with time delays and packet dropout. Simulation results demonstrate that proposed controller has achieved and enhanced the performance in tracking and robustness.