Shuhan Zhang , Junyou Han , Ning Liu , Jingyuan Sun , Huchen Chen , Jinglin Xia , Huiyan Ju , Shouan Liu
{"title":"Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense","authors":"Shuhan Zhang , Junyou Han , Ning Liu , Jingyuan Sun , Huchen Chen , Jinglin Xia , Huiyan Ju , Shouan Liu","doi":"10.1016/j.jgr.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Gray mold, caused by <em>Botrytis cinerea</em>, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to <em>B. cinerea</em> could be induced by fungal hypovirulent strain △<em>BcSpd1</em>. <em>BcSpd1</em> encodes Zn(II)<sub>2</sub>Cys<sub>6</sub> transcription factor which regulates fungal pathogenicity and we recently reported △<em>BcSpd1</em> mutants reduced fungal virulence.</p></div><div><h3>Methods</h3><p>We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by <em>B. cinerea</em> △<em>BcSpd1</em>. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed.</p></div><div><h3>Results</h3><p>We found that △<em>BcSpd1</em> enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △<em>BcSpd1</em> on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth.</p></div><div><h3>Conclusion</h3><p><em>B. cinerea</em> △<em>BcSpd1</em> could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323001112/pdfft?md5=467ee89358f54102b157182d8b842366&pid=1-s2.0-S1226845323001112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845323001112","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence.
Methods
We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed.
Results
We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth.
Conclusion
B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.