{"title":"Origin and Diversity of Wood Decay Fungi Revealed by Genome-Based Analyses","authors":"C. Hori, Makoto Yoshida, K. Igarashi, M. Samejima","doi":"10.2488/jwrs.65.173","DOIUrl":null,"url":null,"abstract":"Wood decay fungi can efficiently decompose and metabolize recalcitrant plant cell walls, which consist of cellulose, hemicellulose and lignin. Their unique degradation processes and related enzymes have been extensively studied toward various industrial and environmental applications. The recent advances in DNA sequencing technologies and informatics have made more than 250 fungal genomes publicly available, and enabled comparative omics analyses to provide new insights regarding diversity of fungal wood degradation processes, their origins and evolutions. In this review, at first, the background of wood decay types and related enzymes was summarized, and then new insights on the molecular mechanism of the diversity of wood degradation by both white-rot and brown-rot fungi as disclosed from the current comparative genome analyses were presented. Moreover, the origin and evolutions of wood decay fungi based on molecular clock analyses were discussed.","PeriodicalId":49800,"journal":{"name":"Mokuzai Gakkaishi","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2488/jwrs.65.173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokuzai Gakkaishi","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2488/jwrs.65.173","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Wood decay fungi can efficiently decompose and metabolize recalcitrant plant cell walls, which consist of cellulose, hemicellulose and lignin. Their unique degradation processes and related enzymes have been extensively studied toward various industrial and environmental applications. The recent advances in DNA sequencing technologies and informatics have made more than 250 fungal genomes publicly available, and enabled comparative omics analyses to provide new insights regarding diversity of fungal wood degradation processes, their origins and evolutions. In this review, at first, the background of wood decay types and related enzymes was summarized, and then new insights on the molecular mechanism of the diversity of wood degradation by both white-rot and brown-rot fungi as disclosed from the current comparative genome analyses were presented. Moreover, the origin and evolutions of wood decay fungi based on molecular clock analyses were discussed.