Algoritmos para la fiscalización inteligente en el Valle del Cauca

Sonia Castro Y., Liliana Plaza Ñ., Luis Carlos Torres S.
{"title":"Algoritmos para la fiscalización inteligente en el Valle del Cauca","authors":"Sonia Castro Y., Liliana Plaza Ñ., Luis Carlos Torres S.","doi":"10.18601/16926722.n20.07","DOIUrl":null,"url":null,"abstract":"La escasez de herramientas para detectar contribuyentes que no cumplen con sus obligaciones tributarias, y la imposibilidad de generar planes de fiscalización presenciales con la actual situación de aislamiento por la pandemia de covid-19, debilitan la generación de valor a las entidades recaudadores, que tienen como fin recaudar recursos para la inversión social como recreación y salud, o para escuelas, puentes y hospitales. Con esta problemática, la Secretaría de las Tecnologías de la Información y Comunicaciones del Valle del Cauca diseñó estrategias basadas en evidencia, con datos de la Unidad de Rentas y de las cámaras de comercio y la DIAN del Valle del Cauca. Con esta información se procedió a crear algoritmos para la predicción de contribuyentes omisos de los impuestos departamentales, al igual que programas con georreferenciación. Se analizan los estados financieros de las 4.525 empresas que reportan a la siete cámaras de comercio del departamento del Valle del Cauca y la base de datos de la DIAN con 686.215 datos de sus reportes de la declaración anual de impuesto mínimo alternativo simple (IMAS) para trabajadores por cuenta propia; IMAS para empleados; declaración de renta y complementarios personas naturales y asimiladas de residentes y sucesiones ilíquidas de causantes residentes; declaración de renta y complementarios o de ingresos y patrimonio para personas jurídicas y asimiladas, y personas naturales y asimiladas no residentes y sucesiones ilíquidas de causantes no residentes. El procedimiento para el análisis de los dos entes, tanto de la dian como de las Cámaras, se realizó por separado en el año 2018. La evidencia y la metodología propuestas presentan una gran pertinencia para las políticas públicas basadas en algoritmos para la focalización de la fiscalización.","PeriodicalId":34162,"journal":{"name":"Revista de Derecho Fiscal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Derecho Fiscal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18601/16926722.n20.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

La escasez de herramientas para detectar contribuyentes que no cumplen con sus obligaciones tributarias, y la imposibilidad de generar planes de fiscalización presenciales con la actual situación de aislamiento por la pandemia de covid-19, debilitan la generación de valor a las entidades recaudadores, que tienen como fin recaudar recursos para la inversión social como recreación y salud, o para escuelas, puentes y hospitales. Con esta problemática, la Secretaría de las Tecnologías de la Información y Comunicaciones del Valle del Cauca diseñó estrategias basadas en evidencia, con datos de la Unidad de Rentas y de las cámaras de comercio y la DIAN del Valle del Cauca. Con esta información se procedió a crear algoritmos para la predicción de contribuyentes omisos de los impuestos departamentales, al igual que programas con georreferenciación. Se analizan los estados financieros de las 4.525 empresas que reportan a la siete cámaras de comercio del departamento del Valle del Cauca y la base de datos de la DIAN con 686.215 datos de sus reportes de la declaración anual de impuesto mínimo alternativo simple (IMAS) para trabajadores por cuenta propia; IMAS para empleados; declaración de renta y complementarios personas naturales y asimiladas de residentes y sucesiones ilíquidas de causantes residentes; declaración de renta y complementarios o de ingresos y patrimonio para personas jurídicas y asimiladas, y personas naturales y asimiladas no residentes y sucesiones ilíquidas de causantes no residentes. El procedimiento para el análisis de los dos entes, tanto de la dian como de las Cámaras, se realizó por separado en el año 2018. La evidencia y la metodología propuestas presentan una gran pertinencia para las políticas públicas basadas en algoritmos para la focalización de la fiscalización.
考卡山谷智能控制算法
缺乏发现不履行税收义务的纳税人的工具,以及在目前因新冠疫情而被隔离的情况下无法制定面对面的控制计划,削弱了税收实体的价值创造,这些实体的目的是为娱乐和卫生等社会投资或学校、桥梁和医院筹集资源。面对这一问题,考卡山谷信息和通信技术秘书处根据收入股、商会和考卡山谷电力公司的数据,制定了基于证据的战略。有了这些信息,就开始建立算法来预测忽视部门税收的纳税人,以及具有地理参考的方案。分析了4525家向考卡山谷省七家商会和DIAN数据库报告的公司的财务报表,其中包括686215份自营职业者简单替代最低税收年度申报表(IMAS)报告的数据;员工IMAS;居民的自然人和类似人的收入和补充申报以及居民的非流动遗产;法人和类似法人、非居民自然人和类似人的收入和补充或收入和财产申报表以及非居民因果关系人的非流动遗产。2018年,DIAN和商会这两个实体的分析程序分别进行了。所提出的证据和方法与基于控制重点算法的公共政策密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
9
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信