The ℓ-adic hypergeometric function and associators

IF 0.8 Q2 MATHEMATICS
H. Furusho
{"title":"The ℓ-adic hypergeometric function and\nassociators","authors":"H. Furusho","doi":"10.2140/tunis.2023.5.1","DOIUrl":null,"url":null,"abstract":"We introduce an $\\ell$-adic analogue of Gauss's hypergeometric function arising from the Galois action on the fundamental torsor of the projective line minus three points. Its definition is motivated by a relation between the KZ-equation and the hypergeometric differential equation in the complex case. We show two basic properties, analogues of Gauss's hypergeometric theorem and of Euler's transformation formula for our $\\ell$-adic function. We prove them by detecting a connection of a certain two-by-two matrix specialization of even unitary associators with the associated gamma function, which extends the result of Ohno and Zagier.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2023.5.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce an $\ell$-adic analogue of Gauss's hypergeometric function arising from the Galois action on the fundamental torsor of the projective line minus three points. Its definition is motivated by a relation between the KZ-equation and the hypergeometric differential equation in the complex case. We show two basic properties, analogues of Gauss's hypergeometric theorem and of Euler's transformation formula for our $\ell$-adic function. We prove them by detecting a connection of a certain two-by-two matrix specialization of even unitary associators with the associated gamma function, which extends the result of Ohno and Zagier.
这个ℓ-adic超几何函数与关联函数
我们介绍了高斯超几何函数的$\ell$adic模拟,该函数由投影线减去三点的基本扭体上的Galois作用引起。它的定义是由KZ方程和复情况下的超几何微分方程之间的关系推动的。我们给出了两个基本性质,高斯超几何定理的类似物和$\ell$adic函数的欧拉变换公式的类似物。我们通过检测偶酉结合子的某个二乘二矩阵专门化与关联伽玛函数的连接来证明它们,这扩展了Ohno和Zagier的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信