Timber-based Façades with Different Connections and Claddings: Assessing Materials’ Reusability, Water Use and Global Warming Potential

Q1 Engineering
M. Juaristi, Ilaria Sebastiani, S. Avesani
{"title":"Timber-based Façades with Different Connections and Claddings: Assessing Materials’ Reusability, Water Use and Global Warming Potential","authors":"M. Juaristi, Ilaria Sebastiani, S. Avesani","doi":"10.47982/jfde.2022.powerskin.5","DOIUrl":null,"url":null,"abstract":"Timber-based façade technologies have the potential to effectively reduce the carbon footprint, reduce water use in construction, and minimize waste, when their manufacturing process is highly prefabricated. Additionally, avoiding glue parts can enhance the sustainability of the façade as its elements can be replaced (extending the durability of façades and therefore buildings) and separated once that they reach their end of life (to re-use or recycle them). Thus, the connection between materials might have a considerable impact on the façade’s sustainability. Moreover, timber-based façades can have different claddings, impacting on the water needed for the technology and their Global Warming Potential (GWP). This paper assesses, through a novel methodological approach, materials’ reusability, water use, and GWP for different façade connections and claddings. Four prototypes with different connections (staples, screws, timber nails, and geometrical assembly) were built. Experimental activities representing façade elements’ substitution and disassembly provided qualitative and quantitative information about production, extraordinary maintenance, and end-of-life phases. Through these tests, the quantity of material that could be re-used and disposed in such phases was quantified and then inserted in a Life Cycle Analysis (LCA). LCA was conducted using EF v.3.0 impact method and components were modelled with EPD information and Ecoinvent cut-off 3.7 database. According to the results, a timber-based façade with timber nails and wood cladding is the most promising of reusable façade materials, decreasing the water use and GWP.","PeriodicalId":37451,"journal":{"name":"Journal of Facade Design and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Facade Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/jfde.2022.powerskin.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Timber-based façade technologies have the potential to effectively reduce the carbon footprint, reduce water use in construction, and minimize waste, when their manufacturing process is highly prefabricated. Additionally, avoiding glue parts can enhance the sustainability of the façade as its elements can be replaced (extending the durability of façades and therefore buildings) and separated once that they reach their end of life (to re-use or recycle them). Thus, the connection between materials might have a considerable impact on the façade’s sustainability. Moreover, timber-based façades can have different claddings, impacting on the water needed for the technology and their Global Warming Potential (GWP). This paper assesses, through a novel methodological approach, materials’ reusability, water use, and GWP for different façade connections and claddings. Four prototypes with different connections (staples, screws, timber nails, and geometrical assembly) were built. Experimental activities representing façade elements’ substitution and disassembly provided qualitative and quantitative information about production, extraordinary maintenance, and end-of-life phases. Through these tests, the quantity of material that could be re-used and disposed in such phases was quantified and then inserted in a Life Cycle Analysis (LCA). LCA was conducted using EF v.3.0 impact method and components were modelled with EPD information and Ecoinvent cut-off 3.7 database. According to the results, a timber-based façade with timber nails and wood cladding is the most promising of reusable façade materials, decreasing the water use and GWP.
具有不同连接和覆层的木质外墙:评估材料的可重复使用性、用水和全球变暖潜力
当其制造过程高度预制时,基于木材的外墙技术有可能有效减少碳足迹,减少建筑用水,并最大限度地减少浪费。此外,避免使用胶水部件可以提高立面的可持续性,因为一旦达到使用寿命,其元素可以被替换(延长立面的耐久性,从而延长建筑的耐久性)并分离(重复使用或回收)。因此,材料之间的联系可能会对立面的可持续性产生相当大的影响。此外,木材外墙可能有不同的覆层,这会影响该技术所需的水及其全球变暖潜力。本文通过一种新的方法论方法,评估了不同外墙连接和覆层的材料可重复使用性、用水和GWP。建造了四个具有不同连接(U形钉、螺钉、木钉和几何组件)的原型。代表立面元素替换和拆卸的实验活动提供了有关生产、特殊维护和报废阶段的定性和定量信息。通过这些测试,可以在这些阶段重复使用和处置的材料数量被量化,然后插入生命周期分析(LCA)。LCA使用EF v.3.0冲击法进行,并使用EPD信息和Ecoinvent截止3.7数据库对组件进行建模。根据研究结果,带有木钉和木覆层的木材基外墙是最有前途的可重复使用的外墙材料,可以减少用水量和全球升温潜能值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Facade Design and Engineering
Journal of Facade Design and Engineering Engineering-Architecture
CiteScore
1.90
自引率
0.00%
发文量
3
审稿时长
12 weeks
期刊介绍: The Journal of Facade Design and Engineering presents new research results and new proven practice in the field of facade design and engineering. The goal is to improve building technologies, as well as process management and architectural design. This journal is a valuable resource for professionals and academics involved in the design and engineering of building envelopes, including the following disciplines: Architecture Façade Engineering Climate Design Building Services Integration Building Physics Façade Design and Construction Management Novel Material Applications. The journal will be directed at the scientific community, but it will also feature papers that focus on the dissemination of science into practice and industrial innovations. In this way, readers explore the interaction between scientific developments, technical considerations and management issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信