L. Bartholdi, Michael Figelius, Markus Lohrey, A. Weiss
{"title":"Groups with ALOGTIME-hard Word Problems and PSPACE-complete Compressed Word Problems","authors":"L. Bartholdi, Michael Figelius, Markus Lohrey, A. Weiss","doi":"10.1145/3569708","DOIUrl":null,"url":null,"abstract":"We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":"14 1","pages":"1 - 41"},"PeriodicalIF":0.8000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 8
Abstract
We give lower bounds on the complexity of the word problem for a large class of non-solvable infinite groups that we call strongly efficiently non-solvable groups. This class includes free groups, Grigorchuk’s group, and Thompson’s groups. We prove that these groups have an NC1-hard word problem and that for some of them (including Grigorchuk’s group and Thompson’s groups) the compressed word problem (which is equivalent to the circuit evaluation problem) is PSPACE-complete.