{"title":"Diagnosis of neurodegenerative diseases with a refined Lempel-Ziv complexity.","authors":"Huan Zhao, Junxiao Xie, Yangquan Chen, Junyi Cao, Wei-Hsin Liao, Hongmei Cao","doi":"10.1007/s11571-023-09973-9","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation into the distinctive difference of gait is of significance for the clinical diagnosis of neurodegenerative diseases. However, human gait is affected by many factors like behavior, occupation and so on, and they may confuse the gait differences among Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. For the purpose of examining distinctive gait differences of neurodegenerative diseases, this study extracts various features from both vertical ground reaction force and time intervals. Moreover, refined Lempel-Ziv complexity is proposed considering the detailed distribution of signals based on the median and quartiles. Basic features (mean, coefficient of variance, and the asymmetry index), nonlinear dynamic features (Hurst exponent, correlation dimension, largest Lyapunov exponent), and refined Lempel-Ziv complexity of different neurodegenerative diseases are compared statistically by violin plot and Kruskal-Wallis test to reveal distinction and regularities. The comparative analysis results illustrate the gait differences across these neurodegenerative diseases by basic features and nonlinear dynamic features. Classification results by random forest indicate that the refined Lempel-Ziv complexity can robustly enhance the diagnosis accuracy when combined with basic features.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09973-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation into the distinctive difference of gait is of significance for the clinical diagnosis of neurodegenerative diseases. However, human gait is affected by many factors like behavior, occupation and so on, and they may confuse the gait differences among Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. For the purpose of examining distinctive gait differences of neurodegenerative diseases, this study extracts various features from both vertical ground reaction force and time intervals. Moreover, refined Lempel-Ziv complexity is proposed considering the detailed distribution of signals based on the median and quartiles. Basic features (mean, coefficient of variance, and the asymmetry index), nonlinear dynamic features (Hurst exponent, correlation dimension, largest Lyapunov exponent), and refined Lempel-Ziv complexity of different neurodegenerative diseases are compared statistically by violin plot and Kruskal-Wallis test to reveal distinction and regularities. The comparative analysis results illustrate the gait differences across these neurodegenerative diseases by basic features and nonlinear dynamic features. Classification results by random forest indicate that the refined Lempel-Ziv complexity can robustly enhance the diagnosis accuracy when combined with basic features.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.