{"title":"Calculation of the Thermodynamic Quantities for Cubic Gauche Nitrogen (cg-N)","authors":"H. Yurtseven, Ö. Akay","doi":"10.5541/ijot.1085553","DOIUrl":null,"url":null,"abstract":"This work aims to investigate the thermodynamic properties of the cubic gauge nitrogen (cg-N) by calculating the relevant thermodynamic quantities as a functions of temperature and pressure. The thermodynamic quantities of volume (V), thermal expansion (αp), isothermal compressibility (κT), bulk modulus(B), and the heat capacity (Cp) are calculated as a function of temperature at constants pressures (0, 35, 125, 250 GPa) for the cg-N structure. Also, the pressure dependences of V, κT, αp, Cp and γ (macroscopic Grüneisen parameter) are predicted at T= 295 K for this structure. This calculation is caried out by the thermodynamic relations using some literature data. From our calculations, we find that the κT, αp and also B exhibit anomalous behavior as the temperature lowers below about 100 K at constant pressures studied. This is an indication that cg-N transforms to a solid phase at low temperatures (below about 100 K). Experimental measurements can examine this prediction when available in the literature for the cg-N phase. Also, our predictions of the κT, αp, Cp and γ at various pressures (T= 295 K) can be examined experimentally for the cg-N phase. This calculation method can be applied to some other structures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1085553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to investigate the thermodynamic properties of the cubic gauge nitrogen (cg-N) by calculating the relevant thermodynamic quantities as a functions of temperature and pressure. The thermodynamic quantities of volume (V), thermal expansion (αp), isothermal compressibility (κT), bulk modulus(B), and the heat capacity (Cp) are calculated as a function of temperature at constants pressures (0, 35, 125, 250 GPa) for the cg-N structure. Also, the pressure dependences of V, κT, αp, Cp and γ (macroscopic Grüneisen parameter) are predicted at T= 295 K for this structure. This calculation is caried out by the thermodynamic relations using some literature data. From our calculations, we find that the κT, αp and also B exhibit anomalous behavior as the temperature lowers below about 100 K at constant pressures studied. This is an indication that cg-N transforms to a solid phase at low temperatures (below about 100 K). Experimental measurements can examine this prediction when available in the literature for the cg-N phase. Also, our predictions of the κT, αp, Cp and γ at various pressures (T= 295 K) can be examined experimentally for the cg-N phase. This calculation method can be applied to some other structures.