Elements of the q-Askey Scheme in the Algebra of Symmetric Functions

Cesar Cuenca, G. Olshanski
{"title":"Elements of the q-Askey Scheme in the Algebra of Symmetric Functions","authors":"Cesar Cuenca, G. Olshanski","doi":"10.17323/1609-4514-2020-20-4-645-694","DOIUrl":null,"url":null,"abstract":"The classical q-hypergeometric orthogonal polynomials are assembled into a hierarchy called the q-Askey scheme. At the top of the hierarchy, there are two closely related families, the Askey-Wilson and q-Racah polynomials. As it is well known, their construction admits a generalization leading to remarkable orthogonal symmetric polynomials in several variables. \nWe construct an analogue of the multivariable q-Racah polynomials in the algebra of symmetric functions. Next, we show that our q-Racah symmetric functions can be degenerated into the big q-Jacobi symmetric functions, introduced in a recent paper by the second author. The latter symmetric functions admit further degenerations leading to new symmetric functions, which are analogues of q-Meixner and Al-Salam--Carlitz polynomials. \nEach of the four families of symmetric functions (q-Racah, big q-Jacobi, q-Meixner, and Al-Salam--Carlitz) forms an orthogonal system of functions with respect to certain measure living on a space of infinite point configurations. The orthogonality measures of the four families are of independent interest. We show that they are linked by limit transitions which are consistent with the degenerations of the corresponding symmetric functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2020-20-4-645-694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The classical q-hypergeometric orthogonal polynomials are assembled into a hierarchy called the q-Askey scheme. At the top of the hierarchy, there are two closely related families, the Askey-Wilson and q-Racah polynomials. As it is well known, their construction admits a generalization leading to remarkable orthogonal symmetric polynomials in several variables. We construct an analogue of the multivariable q-Racah polynomials in the algebra of symmetric functions. Next, we show that our q-Racah symmetric functions can be degenerated into the big q-Jacobi symmetric functions, introduced in a recent paper by the second author. The latter symmetric functions admit further degenerations leading to new symmetric functions, which are analogues of q-Meixner and Al-Salam--Carlitz polynomials. Each of the four families of symmetric functions (q-Racah, big q-Jacobi, q-Meixner, and Al-Salam--Carlitz) forms an orthogonal system of functions with respect to certain measure living on a space of infinite point configurations. The orthogonality measures of the four families are of independent interest. We show that they are linked by limit transitions which are consistent with the degenerations of the corresponding symmetric functions.
分享
查看原文
对称函数代数中q-Askey格式的元素
经典的q-超几何正交多项式被组装成一个称为q-Askey方案的层次。在层次结构的顶部,有两个密切相关的族,Askey Wilson多项式和q-Racah多项式。众所周知,它们的构造允许在几个变量中推广显著的正交对称多项式。我们构造了对称函数代数中多变量q-Racah多项式的一个类似物。接下来,我们证明了我们的q-Racah对称函数可以退化为大的q-Jacobi对称函数,这是第二作者最近的一篇论文中介绍的。后一种对称函数允许进一步退化,从而产生新的对称函数,这些对称函数类似于q-Meixner和Al-Salam-Calitz多项式。对称函数的四个族(q-Racah、大q-Jacobi、q-Meixner和Al-Salam-Calitz)中的每一个都形成了一个关于存在于无限点配置空间上的某个测度的正交函数系统。这四个族的正交性度量具有独立的意义。我们证明了它们是由极限跃迁连接的,这与相应对称函数的退化是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信