Magnetohydrodynamic and Ferrohydrodynamic Interactions on the Biomagnetic Flow and Heat Transfer Containing Magnetic Particles Along a Stretched Cylinder

IF 1.5 Q3 MECHANICS
J. Alam, M. G. Murtaza, E. Tzirtzilakis, M. Ferdows
{"title":"Magnetohydrodynamic and Ferrohydrodynamic Interactions on the Biomagnetic Flow and Heat Transfer Containing Magnetic Particles Along a Stretched Cylinder","authors":"J. Alam, M. G. Murtaza, E. Tzirtzilakis, M. Ferdows","doi":"10.13052/ejcm2642-2085.3111","DOIUrl":null,"url":null,"abstract":"In this paper, the laminar, incompressible and viscous flow of a biomagnetic fluid containing Fe33O44 magnetic particles, through a two dimensional stretched cylinder is numerically studied in the presence of a magnetic dipole. The extended formulation of Biomagnetic Fluid Dynamics (BFD) which involves the principles of MagnetoHydroDynamic (MHD) and FerroHydroDynamic (FHD) is adopted. The pressure terms are also taken consideration. The physical problem which is described by a coupled system of partial differential equations along with corresponding boundary conditions is converted to a coupled system of nonlinear ordinary differential equations subject to analogous boundary conditions utilizing similarity approach. The numerical solution is obtained by using an efficient technique which is based on a common finite difference method with central differencing, a tridigonal matrix manipulation and an iterative procedure. For verification proposes a comparison with previously published results is also made. The numerous results concerning the axial velocity, temperature, pressure, skin friction coefficient, rate of heat transfer and wall pressure parameter are presented for various values of the parameters. The axial velocity is decreased as the ferromagnetic number increases, temperature is enhanced with increasing values of the magnetic parameter.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the laminar, incompressible and viscous flow of a biomagnetic fluid containing Fe33O44 magnetic particles, through a two dimensional stretched cylinder is numerically studied in the presence of a magnetic dipole. The extended formulation of Biomagnetic Fluid Dynamics (BFD) which involves the principles of MagnetoHydroDynamic (MHD) and FerroHydroDynamic (FHD) is adopted. The pressure terms are also taken consideration. The physical problem which is described by a coupled system of partial differential equations along with corresponding boundary conditions is converted to a coupled system of nonlinear ordinary differential equations subject to analogous boundary conditions utilizing similarity approach. The numerical solution is obtained by using an efficient technique which is based on a common finite difference method with central differencing, a tridigonal matrix manipulation and an iterative procedure. For verification proposes a comparison with previously published results is also made. The numerous results concerning the axial velocity, temperature, pressure, skin friction coefficient, rate of heat transfer and wall pressure parameter are presented for various values of the parameters. The axial velocity is decreased as the ferromagnetic number increases, temperature is enhanced with increasing values of the magnetic parameter.
磁流体力学和铁流体力学相互作用对含磁性颗粒的生物磁流体流动和热传递的影响
本文数值研究了含有Fe33O44磁性粒子的生物磁性流体在磁偶极子存在下通过二维拉伸圆柱体的层流、不可压缩和粘性流动。采用了包含磁流体动力学(MHD)和铁流体动力学(FHD)原理的生物磁性流体动力学(BFD)的扩展公式。压力项也被考虑在内。利用相似性方法将由偏微分方程的耦合系统连同相应的边界条件描述的物理问题转换为受类似边界条件约束的非线性常微分方程的耦联系统。数值解是基于一种常见的有限差分方法,该方法具有中心差分、三角矩阵运算和迭代程序。为了验证建议,还与之前公布的结果进行了比较。对于不同的参数值,给出了关于轴向速度、温度、压力、表面摩擦系数、传热率和壁压参数的大量结果。轴向速度随着铁磁数的增加而降低,温度随着磁参数的增加而升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信