{"title":"Evaluation of Hydrogen-Assisted Cracking Susceptibility in Grade T24 Steel","authors":"Xiuli Feng, J. Steiner, B. Alexandrov, J. Lippold","doi":"10.29391/2020.99.010","DOIUrl":null,"url":null,"abstract":"The delayed hydrogen cracking test was performed to evaluate the hydrogen-assisted cracking (HAC) susceptibility of Grade T24 steel base metal and the simulated coarsegrained heat-affected zone (CGHAZ). The base metal did not fail after testing for up to 672 h. In contrast, the CGHAZ sample failed after about 2 h when charged from all four sides, and 4 h when charged only from the internal diameter (ID) surface. The higher HAC resistance of the base metal compared to the CGHAZ was due to the microstructure difference. The tempered bainitic-martensitic microstructure in the base metal was more resistant to HAC compared to the untempered martensite microstructure in the CGHAZ. Fractography analysis indicated the decarburized zone on the ID surface delayed the development of the critical hydrogen concentration in the CGHAZ, thus improving the HAC resistance. The HAC cracking initiated with an intergranular fracture, then transitioned to quasi-cleavage and microvoid coalescence. The fracture behavior was explained using Beachem’s model.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2020.99.010","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The delayed hydrogen cracking test was performed to evaluate the hydrogen-assisted cracking (HAC) susceptibility of Grade T24 steel base metal and the simulated coarsegrained heat-affected zone (CGHAZ). The base metal did not fail after testing for up to 672 h. In contrast, the CGHAZ sample failed after about 2 h when charged from all four sides, and 4 h when charged only from the internal diameter (ID) surface. The higher HAC resistance of the base metal compared to the CGHAZ was due to the microstructure difference. The tempered bainitic-martensitic microstructure in the base metal was more resistant to HAC compared to the untempered martensite microstructure in the CGHAZ. Fractography analysis indicated the decarburized zone on the ID surface delayed the development of the critical hydrogen concentration in the CGHAZ, thus improving the HAC resistance. The HAC cracking initiated with an intergranular fracture, then transitioned to quasi-cleavage and microvoid coalescence. The fracture behavior was explained using Beachem’s model.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.