{"title":"Defining an Integrated and Computed Methodology Approach for Sentiment and Psychographic Analysis in Tourism Research","authors":"Federica Izzo, Q. Picone","doi":"10.29036/jots.v13i25.393","DOIUrl":null,"url":null,"abstract":"High-performance computational resources and artificial intelligence-based tools can enhance tourism research and marketing. However, a formal methodological approach using digital technologies in this field is still missing. This research work presents the preliminary results of defining an integrated computational methodology in tourism research and marketing. In addition, the paper aims to provide guidelines for a methodological approach leveraging technological resources and Big Data. The proposed research method is based on online User-Generated Content (UGC) analysis through a psychographic approach based on the Big Five Model, Sentiment Analysis, and Machine Learning techniques. The study is supported by high-performance computing resources, artificial intelligence-based tools, and open-source Python-based software for data collection, text analysis, and psychographic attribution. Results show a remarkable performance of the BFF prediction model and confirm the role of personality in the tourists’ decision-making and appreciation of a site. Future developments of this project involve using the acquired structured dataset labeled with sentiment and psychographic attribution to create a further prediction model on tourist segments and appreciation as part of a marketing strategy in tourism management. Future research should push forward the development of further integrated and performing computer-based methodology in tourism research and marketing, leveraging the massive amount of data and the potential of high-performance computing techniques. The main contribution of this research effort is twofold: the definition of a general-purpose BFF/Sentiment Analysis methodology and the development of a prediction model from online UGC based on the Big Five personality traits in the tourism research scenario.","PeriodicalId":43795,"journal":{"name":"Journal of Tourism and Services","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tourism and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29036/jots.v13i25.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 1
Abstract
High-performance computational resources and artificial intelligence-based tools can enhance tourism research and marketing. However, a formal methodological approach using digital technologies in this field is still missing. This research work presents the preliminary results of defining an integrated computational methodology in tourism research and marketing. In addition, the paper aims to provide guidelines for a methodological approach leveraging technological resources and Big Data. The proposed research method is based on online User-Generated Content (UGC) analysis through a psychographic approach based on the Big Five Model, Sentiment Analysis, and Machine Learning techniques. The study is supported by high-performance computing resources, artificial intelligence-based tools, and open-source Python-based software for data collection, text analysis, and psychographic attribution. Results show a remarkable performance of the BFF prediction model and confirm the role of personality in the tourists’ decision-making and appreciation of a site. Future developments of this project involve using the acquired structured dataset labeled with sentiment and psychographic attribution to create a further prediction model on tourist segments and appreciation as part of a marketing strategy in tourism management. Future research should push forward the development of further integrated and performing computer-based methodology in tourism research and marketing, leveraging the massive amount of data and the potential of high-performance computing techniques. The main contribution of this research effort is twofold: the definition of a general-purpose BFF/Sentiment Analysis methodology and the development of a prediction model from online UGC based on the Big Five personality traits in the tourism research scenario.
期刊介绍:
Journal of Tourism and Services, established in September 2010, is the international reviewed scientific research journal published by the Center for International Scientific Research of VŠO and VŠPP in cooperation with the following partners. The journal publishes high-quality scientific papers and essays with a focus on tourism and service industry development. Together with the scientific part and in order to promote the exchange of current and innovative ideas and stimulating debate, the Journal also includes Reviews of Existing Work or Short Essays, Research Notes, and Research and Industry sections to address important topics and advance theoretical knowledge or thinking about key areas of tourism and services and to allow researchers to present initial findings and reflections or problems concerning fieldwork and research in general.