Makram A. Fakhri, Evan T. Salim, Raed Khalid Ibrahim, Hiyam S. Ali, Ahmad S. Azzahrani, Raid A. Ismail, Subash C. B. Gopinath, Ahmed C. Kadhim, Zaid T. Salim
{"title":"Investigations On Device Structure and Sensing Mechanism Using Gold Nanoparticles Decorated Photonic Crystal Fiber-based Biosensors","authors":"Makram A. Fakhri, Evan T. Salim, Raed Khalid Ibrahim, Hiyam S. Ali, Ahmad S. Azzahrani, Raid A. Ismail, Subash C. B. Gopinath, Ahmed C. Kadhim, Zaid T. Salim","doi":"10.1007/s11468-023-02015-4","DOIUrl":null,"url":null,"abstract":"<div><p>A modified photonic crystal fiber (PCF) was utilized as a biosensor, incorporating gold nanoparticles as an active plasmonic material. The finite element method (FEM) was employed to compute numerical interpretations of sensing performance using various liquids: liver blood, colon blood, human plasma, water, and pentanol. In the proposed biosensor configuration, the test sample (analyte) was placed within the core, surrounded by cladding air holes, and external to the hollow core fiber structure. Sensitivity calculations were conducted both before and after the addition of the gold overlayer. The maximum amplitude sensitivity was determined to be 769.57 RIU<sup>-1</sup> for human plasma, accompanied by the optimal electric field of 400V/m. Similarly, in the same liquid, when the deposited photonic crystal fiber (PCF) was coated with a gold layer, the maximum amplitude sensitivity reached 975.53 RIU<sup>-1</sup> at an optimal electric field of 477 V/m. Considering the proposed sensor as a refractive index sensor, it exclusively utilized an analyte sample within the core and air holes of the PCF. Here, the maximum amplitude sensitivity attained was 869.84 RIU<sup>-1</sup>, aligning with the best electric field value of 434 V/m.\"</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"19 2","pages":"533 - 550"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-02015-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A modified photonic crystal fiber (PCF) was utilized as a biosensor, incorporating gold nanoparticles as an active plasmonic material. The finite element method (FEM) was employed to compute numerical interpretations of sensing performance using various liquids: liver blood, colon blood, human plasma, water, and pentanol. In the proposed biosensor configuration, the test sample (analyte) was placed within the core, surrounded by cladding air holes, and external to the hollow core fiber structure. Sensitivity calculations were conducted both before and after the addition of the gold overlayer. The maximum amplitude sensitivity was determined to be 769.57 RIU-1 for human plasma, accompanied by the optimal electric field of 400V/m. Similarly, in the same liquid, when the deposited photonic crystal fiber (PCF) was coated with a gold layer, the maximum amplitude sensitivity reached 975.53 RIU-1 at an optimal electric field of 477 V/m. Considering the proposed sensor as a refractive index sensor, it exclusively utilized an analyte sample within the core and air holes of the PCF. Here, the maximum amplitude sensitivity attained was 869.84 RIU-1, aligning with the best electric field value of 434 V/m."
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.