{"title":"Dinkelbach Type Approximation Algorithms for Nonlinear Fractional Optimization Problems","authors":"A. Orzan, R. Precup","doi":"10.1080/01630563.2023.2217893","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we establish some approximation versions of the classical Dinkelbach algorithm for nonlinear fractional optimization problems in Banach spaces. We start by examining what occurs if at any step of the algorithm, the generated point desired to be a minimizer can only be determined with a given error. Next we assume that the step error tends to zero as the algorithm advances. The last version of the algorithm we present is making use of Ekeland’s variational principle for generating the sequence of minimizer-like points. In the final part of the article we deliver some results in order to achieve a Palais-Smale type compactness condition that guarantees the convergence of our Dinkelbach-Ekeland algorithm.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"954 - 969"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2217893","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this paper we establish some approximation versions of the classical Dinkelbach algorithm for nonlinear fractional optimization problems in Banach spaces. We start by examining what occurs if at any step of the algorithm, the generated point desired to be a minimizer can only be determined with a given error. Next we assume that the step error tends to zero as the algorithm advances. The last version of the algorithm we present is making use of Ekeland’s variational principle for generating the sequence of minimizer-like points. In the final part of the article we deliver some results in order to achieve a Palais-Smale type compactness condition that guarantees the convergence of our Dinkelbach-Ekeland algorithm.
期刊介绍:
Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal.
Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.