Shan Sun, Zhuyi Lin, Shasha Cheng, A. M. Abd El-Aty, M. Tan
{"title":"Effect of water-retention agents on Scomberomorus niphonius surimi after repeated freeze–thaw cycles: low-field NMR and MRI studies","authors":"Shan Sun, Zhuyi Lin, Shasha Cheng, A. M. Abd El-Aty, M. Tan","doi":"10.1515/ijfe-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract Repeated freeze–thaw cycles can directly cause the changes in the water distribution, physicochemical characteristics, and microstructure of Scomberomorus niphonius surimi. To improve the quality of S. niphonius surimi, the effect of water retention agents (phosphate and trehalose) was investigated during freeze-thaw cycles. The results of low-field nuclear magnetic resonance (LF-NMR) combined with magnetic resonance imaging (MRI) analysis showed that the water retention agents could obviously decrease the water loss and water mobility during repeated freeze–thaw cycles. Water retention agent significantly reduced the cook loss and improved the surimi quality by decreasing the surimi protein denaturation. The scanning electron microscopy (SEM) characterization revealed that water retention agents could obviously ameliorate the protein structure damage. In addition, the principal component analysis combined with LF-NMR parameters showed clear discrimination between samples supplemented with different water retention agents. In a word, the LF-NMR and MRI might provide useful information in a non-invasive manner for monitoring the effects of water-retention agents on surimi after repeated freeze–thaw cycles.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":"19 1","pages":"15 - 25"},"PeriodicalIF":1.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2022-0270","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Repeated freeze–thaw cycles can directly cause the changes in the water distribution, physicochemical characteristics, and microstructure of Scomberomorus niphonius surimi. To improve the quality of S. niphonius surimi, the effect of water retention agents (phosphate and trehalose) was investigated during freeze-thaw cycles. The results of low-field nuclear magnetic resonance (LF-NMR) combined with magnetic resonance imaging (MRI) analysis showed that the water retention agents could obviously decrease the water loss and water mobility during repeated freeze–thaw cycles. Water retention agent significantly reduced the cook loss and improved the surimi quality by decreasing the surimi protein denaturation. The scanning electron microscopy (SEM) characterization revealed that water retention agents could obviously ameliorate the protein structure damage. In addition, the principal component analysis combined with LF-NMR parameters showed clear discrimination between samples supplemented with different water retention agents. In a word, the LF-NMR and MRI might provide useful information in a non-invasive manner for monitoring the effects of water-retention agents on surimi after repeated freeze–thaw cycles.
期刊介绍:
International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.