The influence of forest tree species composition on the forest height predicted from airborne laser scanning data – A case study in Latvia

IF 0.7 4区 农林科学 Q3 FORESTRY
Baltic Forestry Pub Date : 2023-05-15 DOI:10.46490/bf663
J. Ivanovs, A. Lazdiņš, Mait Lang
{"title":"The influence of forest tree species composition on the forest height predicted from airborne laser scanning data – A case study in Latvia","authors":"J. Ivanovs, A. Lazdiņš, Mait Lang","doi":"10.46490/bf663","DOIUrl":null,"url":null,"abstract":"Airborne laser scanning (ALS) is used to predict different forest inventory parameters; however, the ALS point cloud properties depend on various parameters such as the type of ALS scanner employed, flight altitude and scanning angle, forest stand structure, forest tree species composition, vegetation season, etc. This study used national coverage high-resolution ALS data with minimum point density of 4 points per square meter in combination with field data from the National Forest Inventory (NFI) to build forest stand height models for forest stands dominated by 6 most common tree species in Latvian mixed forest stands, viz. Pinus sylvestris L., Betula pendula Roth, Picea abies (L.) Karst., Populus tremula L., Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. for the various ALS scanners employed and at different growing seasons. The selected NFI plots are divided into modelling and validation datasets in a ratio of 3 : 1. The results show that for a universal forest stand height model, the RMSE value is 1.91 m and the MAE is 1.41 m. For the forest stand height models, which are stratified by scanner, individual tree species and seasons, the RMSE value is within the limits of 1.4 m for forest stands dominated by Scots pine in leaf-on canopy condition to 3.8 m for birch in leaf-off canopy condition.\nKey words: forest inventory, airborne laser scanning, phenology, large scale forest mapping ","PeriodicalId":55404,"journal":{"name":"Baltic Forestry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.46490/bf663","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

Abstract

Airborne laser scanning (ALS) is used to predict different forest inventory parameters; however, the ALS point cloud properties depend on various parameters such as the type of ALS scanner employed, flight altitude and scanning angle, forest stand structure, forest tree species composition, vegetation season, etc. This study used national coverage high-resolution ALS data with minimum point density of 4 points per square meter in combination with field data from the National Forest Inventory (NFI) to build forest stand height models for forest stands dominated by 6 most common tree species in Latvian mixed forest stands, viz. Pinus sylvestris L., Betula pendula Roth, Picea abies (L.) Karst., Populus tremula L., Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. for the various ALS scanners employed and at different growing seasons. The selected NFI plots are divided into modelling and validation datasets in a ratio of 3 : 1. The results show that for a universal forest stand height model, the RMSE value is 1.91 m and the MAE is 1.41 m. For the forest stand height models, which are stratified by scanner, individual tree species and seasons, the RMSE value is within the limits of 1.4 m for forest stands dominated by Scots pine in leaf-on canopy condition to 3.8 m for birch in leaf-off canopy condition. Key words: forest inventory, airborne laser scanning, phenology, large scale forest mapping 
森林树种组成对机载激光扫描数据预测的森林高度的影响——以拉脱维亚为例
机载激光扫描(ALS)用于预测不同的森林库存参数;然而,ALS点云的特性取决于各种参数,如所使用的ALS扫描仪的类型、飞行高度和扫描角度、林分结构、森林树种组成、植被季节等。本研究使用最小点密度为每平方米4点的全国覆盖率高分辨率ALS数据,结合国家森林调查(NFI)的实地数据,为拉脱维亚混合林分中6种最常见的树种(即樟子松。,桦树、云杉。,杨。,Alnus incana(L.)Moench和Alnus glutinosa(L.)Gaertn。用于在不同生长季节使用的各种ALS扫描仪。所选的NFI图按3的比例划分为建模和验证数据集 : 1.结果表明,对于通用林分高度模型,RMSE值为1.91 m,MAE为1.41 m.对于按扫描仪、个别树种和季节分层的林分高度模型,RMSE值在1.4的范围内 m,以苏格兰松为主的林分在树冠条件下的叶片为3.8 m为落叶条件下的桦树。关键词:森林清查、机载激光扫描、酚学、大规模森林测绘
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Baltic Forestry
Baltic Forestry 农林科学-林学
CiteScore
1.60
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal welcomes the original articles as well as short reports, review papers on forestry and forest science throughout the Baltic Sea region and elsewhere in the area of boreal and temperate forests. The Baltic Sea region is rather unique through its intrinsic environment and distinguished geographical and social conditions. A temperate climate, transitional and continental, has influenced formation of the mixed coniferous and deciduous stands of high productivity and biological diversity. The forest science has been affected by the ideas from both the East and West. In 1995, Forest Research Institutes and Universities from Estonia, Latvia and Lithuania joined their efforts to publish BALTIC FORESTRY.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信