{"title":"The Dam-Break Problem in a Semi-Open Channel","authors":"V. V. Ostapenko","doi":"10.1134/S1028335822120059","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the nonclassical dam-break problem in a semi-open rectangular channel in the first approximation of the shallow water theory when the liquid is under the lid in the upper pool of the dam (i.e., it completely fills a semi-infinite rectangular container) and the liquid surface is free in the bottom pool. It is shown that there is a unique piecewise constant self-similar solution to this problem, in which the hydraulic bore in the bottom pool of the dam is modeled by a shock wave, the descent wave in the upper pool of the dam is modeled by a strong discontinuity (when passing through which the total energy of the liquid flow is conserved), while the flow in the region between the hydraulic bore and the descent wave is approximated by a constant solution. Experimental modeling of this problem will make it possible to obtain wave flows that arise when liquid flows out of a rectangular container, a special case of which is the classical Benjamin flow.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335822120059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the nonclassical dam-break problem in a semi-open rectangular channel in the first approximation of the shallow water theory when the liquid is under the lid in the upper pool of the dam (i.e., it completely fills a semi-infinite rectangular container) and the liquid surface is free in the bottom pool. It is shown that there is a unique piecewise constant self-similar solution to this problem, in which the hydraulic bore in the bottom pool of the dam is modeled by a shock wave, the descent wave in the upper pool of the dam is modeled by a strong discontinuity (when passing through which the total energy of the liquid flow is conserved), while the flow in the region between the hydraulic bore and the descent wave is approximated by a constant solution. Experimental modeling of this problem will make it possible to obtain wave flows that arise when liquid flows out of a rectangular container, a special case of which is the classical Benjamin flow.
期刊介绍:
Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.