{"title":"Diffusion MRI in the brain – Theory and concepts","authors":"J-Donald Tournier","doi":"10.1016/j.pnmrs.2019.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past two decades, diffusion MRI has become an essential tool in neuroimaging investigations. This is due to its sensitivity to the motion of water molecules as they diffuse through the microstructural environment, allowing diffusion MRI to be used as a ‘probe’ of tissue microstructure. Furthermore, this sensitivity is strongly direction-dependent, notably in brain white matter, due to the alignment of structures that restrict or hinder the motion of water molecules, notably axonal membranes. This provides a means of inferring the orientation of fibres <em>in vivo</em>, and by use of appropriate fibre-tracking algorithms, of delineating the path of white matter tracts in the brain. The ability to perform so-called tractography in humans <em>in vivo</em> non-invasively is unique to diffusion MRI, and is now used in applications such as neurosurgery planning and more broadly within investigations of brain connectomics. This review describes the theory and concepts of diffusion MRI and describes its most important areas of application in the brain, with a strong focus on tractography.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"112 ","pages":"Pages 1-16"},"PeriodicalIF":7.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2019.03.001","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656519300032","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 50
Abstract
Over the past two decades, diffusion MRI has become an essential tool in neuroimaging investigations. This is due to its sensitivity to the motion of water molecules as they diffuse through the microstructural environment, allowing diffusion MRI to be used as a ‘probe’ of tissue microstructure. Furthermore, this sensitivity is strongly direction-dependent, notably in brain white matter, due to the alignment of structures that restrict or hinder the motion of water molecules, notably axonal membranes. This provides a means of inferring the orientation of fibres in vivo, and by use of appropriate fibre-tracking algorithms, of delineating the path of white matter tracts in the brain. The ability to perform so-called tractography in humans in vivo non-invasively is unique to diffusion MRI, and is now used in applications such as neurosurgery planning and more broadly within investigations of brain connectomics. This review describes the theory and concepts of diffusion MRI and describes its most important areas of application in the brain, with a strong focus on tractography.
期刊介绍:
Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.