{"title":"Determinant factors for residence time of kinesin motors at microtubule ends","authors":"Ping Xie","doi":"10.1007/s10867-022-09623-x","DOIUrl":null,"url":null,"abstract":"<div><p>Kinesins constitute a superfamily of microtubule (MT)-based motor proteins, which can perform diverse biological functions in cells such as transporting vesicle, regulating MT dynamics, and segregating chromosome. Some motors such as kinesin-1, kinesin-2, and kinesin-3 do the activity mainly on the MT lattice, while others such as kinesin-7 and kinesin-8 do the activity mainly at the MT plus end. To perform the different functions, it is required that the former motors can reside on the MT lattice for longer times than at the end, while the latter motors can reside at the MT plus end for long times. Here, a simple but general theory of the MT-end residence time of the kinesin motor is presented, with which the factors dictating the residence time are determined. The theory is further used to study specifically the MT-end residence times of <i>Drosophila</i> kinesin-1, kinesin-2/KIF3AB, kinesin-3/Unc104, kinesin-5/Eg5, kinesin-7/CENP-E, and kinesin-8/Kip3 motors, with the theoretical results being in agreement with the available experimental data.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-022-09623-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-022-09623-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Kinesins constitute a superfamily of microtubule (MT)-based motor proteins, which can perform diverse biological functions in cells such as transporting vesicle, regulating MT dynamics, and segregating chromosome. Some motors such as kinesin-1, kinesin-2, and kinesin-3 do the activity mainly on the MT lattice, while others such as kinesin-7 and kinesin-8 do the activity mainly at the MT plus end. To perform the different functions, it is required that the former motors can reside on the MT lattice for longer times than at the end, while the latter motors can reside at the MT plus end for long times. Here, a simple but general theory of the MT-end residence time of the kinesin motor is presented, with which the factors dictating the residence time are determined. The theory is further used to study specifically the MT-end residence times of Drosophila kinesin-1, kinesin-2/KIF3AB, kinesin-3/Unc104, kinesin-5/Eg5, kinesin-7/CENP-E, and kinesin-8/Kip3 motors, with the theoretical results being in agreement with the available experimental data.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.