MPI-GWAS: a supercomputing-aided permutation approach for genome-wide association studies

H. Paik, Yongseong Cho, S. Cho, Oh-Kyoung Kwon
{"title":"MPI-GWAS: a supercomputing-aided permutation approach for genome-wide association studies","authors":"H. Paik, Yongseong Cho, S. Cho, Oh-Kyoung Kwon","doi":"10.5808/gi.22001","DOIUrl":null,"url":null,"abstract":"Permutation testing is a robust and popular approach for significance testing in genomic research that has the advantage of reducing inflated type 1 error rates; however, its computational cost is notorious in genome-wide association studies (GWAS). Here, we developed a supercomputing-aided approach to accelerate the permutation testing for GWAS, based on the message-passing interface (MPI) on parallel computing architecture. Our application, called MPI-GWAS, conducts MPI-based permutation testing using a parallel computing approach with our supercomputing system, Nurion (8,305 compute nodes, and 563,740 central processing units [CPUs]). For 107 permutations of one locus in MPI-GWAS, it was calculated in 600 s using 2,720 CPU cores. For 107 permutations of ~30,000–50,000 loci in over 7,000 subjects, the total elapsed time was ~4 days in the Nurion supercomputer. Thus, MPI-GWAS enables us to feasibly compute the permutation-based GWAS within a reason-able time by harnessing the power of parallel computing resources.","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5808/gi.22001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Permutation testing is a robust and popular approach for significance testing in genomic research that has the advantage of reducing inflated type 1 error rates; however, its computational cost is notorious in genome-wide association studies (GWAS). Here, we developed a supercomputing-aided approach to accelerate the permutation testing for GWAS, based on the message-passing interface (MPI) on parallel computing architecture. Our application, called MPI-GWAS, conducts MPI-based permutation testing using a parallel computing approach with our supercomputing system, Nurion (8,305 compute nodes, and 563,740 central processing units [CPUs]). For 107 permutations of one locus in MPI-GWAS, it was calculated in 600 s using 2,720 CPU cores. For 107 permutations of ~30,000–50,000 loci in over 7,000 subjects, the total elapsed time was ~4 days in the Nurion supercomputer. Thus, MPI-GWAS enables us to feasibly compute the permutation-based GWAS within a reason-able time by harnessing the power of parallel computing resources.
MPI-GWAS:一种用于全基因组关联研究的超计算辅助排列方法
置换测试是基因组研究中一种稳健且流行的显著性测试方法,其优点是降低了膨胀的1型错误率;然而,它的计算成本在全基因组关联研究(GWAS)中臭名昭著。在这里,我们开发了一种基于并行计算架构上的消息传递接口(MPI)的超级计算辅助方法来加速GWAS的排列测试。我们的应用程序名为MPI-GWAS,使用我们的超级计算系统Nurion(8305个计算节点和563740个中央处理单元[CCPU])的并行计算方法进行基于MPI的排列测试。对于MPI-GWAS中一个基因座的107个排列,使用2720个CPU核在600秒内进行计算。对于7000多名受试者的107个约30000–50000个基因座的排列,在Nurion超级计算机中的总运行时间约为4天。因此,MPI-GWAS使我们能够利用并行计算资源的能力,在合理的时间内计算基于排列的GWAS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信