Poroelastic stress relaxation, slip stress transfer and friction weakening controlled post-injection seismicity at the Basel Enhanced Geothermal System
Auregan Boyet, Silvia De Simone, Shemin Ge, Víctor Vilarrasa
{"title":"Poroelastic stress relaxation, slip stress transfer and friction weakening controlled post-injection seismicity at the Basel Enhanced Geothermal System","authors":"Auregan Boyet, Silvia De Simone, Shemin Ge, Víctor Vilarrasa","doi":"10.1038/s43247-023-00764-y","DOIUrl":null,"url":null,"abstract":"Induced seismicity is a limiting factor for the development of Enhanced Geothermal Systems (EGS). Its causal mechanisms are not fully understood, especially those of post-injection seismicity. To better understand the mechanisms that induced seismicity in the controversial case of the Basel EGS (Switzerland), we perform coupled hydro-mechanical simulation of the plastic response of a discrete pre-existing fault network built on the basis of the monitored seismicity. Simulation results show that the faults located in the vicinity of the injection well fail during injection mainly triggered by pore pressure buildup. Poroelastic stressing, which may be stabilizing or destabilizing depending on the fault orientation, reaches further than pressure diffusion, having a greater effect on distant faults. After injection stops, poroelastic stress relaxation leads to the immediate rupture of previously stabilized faults. Shear-slip stress transfer, which also contributes to post-injection reactivation of distant faults, is enhanced in faults with slip-induced friction weakening. Post-injection seismicity at the enhanced geothermal system of Basel, Switzerland, was caused by poroelastic stress relaxation of stabilized faults during injection, according to numerical simulations of the stress field applied on a fault network.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-023-00764-y.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-023-00764-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Induced seismicity is a limiting factor for the development of Enhanced Geothermal Systems (EGS). Its causal mechanisms are not fully understood, especially those of post-injection seismicity. To better understand the mechanisms that induced seismicity in the controversial case of the Basel EGS (Switzerland), we perform coupled hydro-mechanical simulation of the plastic response of a discrete pre-existing fault network built on the basis of the monitored seismicity. Simulation results show that the faults located in the vicinity of the injection well fail during injection mainly triggered by pore pressure buildup. Poroelastic stressing, which may be stabilizing or destabilizing depending on the fault orientation, reaches further than pressure diffusion, having a greater effect on distant faults. After injection stops, poroelastic stress relaxation leads to the immediate rupture of previously stabilized faults. Shear-slip stress transfer, which also contributes to post-injection reactivation of distant faults, is enhanced in faults with slip-induced friction weakening. Post-injection seismicity at the enhanced geothermal system of Basel, Switzerland, was caused by poroelastic stress relaxation of stabilized faults during injection, according to numerical simulations of the stress field applied on a fault network.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.