{"title":"Higher order Traub–Steffensen type methods and their convergence analysis in Banach spaces","authors":"Deepak Kumar, J. Sharma, Harmandeep Singh","doi":"10.1515/ijnsns-2021-0202","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider two-step fourth-order and three-step sixth-order derivative free iterative methods and study their convergence in Banach spaces to approximate a locally-unique solution of nonlinear equations. Study of convergence analysis provides radius of convergence, error bounds and estimates on the uniqueness of the solution. Such estimates are not provided in the approaches that use Taylor expansions using higher order derivatives. Furthermore, in quest of fast algorithms, a generalized q-step scheme with increasing convergence order 2q + 2 is proposed and analyzed. Novelty of the q-step algorithm is that, in each step, order of convergence is increased by an amount of two at the cost of only one additional function evaluation. To maximize the computational efficiency, the optimal number of steps is calculated. Theoretical results regarding convergence and computational efficiency are verified through numerical experimentation.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"1565 - 1587"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this paper, we consider two-step fourth-order and three-step sixth-order derivative free iterative methods and study their convergence in Banach spaces to approximate a locally-unique solution of nonlinear equations. Study of convergence analysis provides radius of convergence, error bounds and estimates on the uniqueness of the solution. Such estimates are not provided in the approaches that use Taylor expansions using higher order derivatives. Furthermore, in quest of fast algorithms, a generalized q-step scheme with increasing convergence order 2q + 2 is proposed and analyzed. Novelty of the q-step algorithm is that, in each step, order of convergence is increased by an amount of two at the cost of only one additional function evaluation. To maximize the computational efficiency, the optimal number of steps is calculated. Theoretical results regarding convergence and computational efficiency are verified through numerical experimentation.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.