S 1 $S^1$ -equivariant contact homology for hypertight contact forms

Pub Date : 2022-07-07 DOI:10.1112/topo.12240
Michael Hutchings, Jo Nelson
{"title":"S\n 1\n \n $S^1$\n -equivariant contact homology for hypertight contact forms","authors":"Michael Hutchings,&nbsp;Jo Nelson","doi":"10.1112/topo.12240","DOIUrl":null,"url":null,"abstract":"<p>In a previous paper, we showed that the original definition of cylindrical contact homology, with rational coefficients, is valid on a closed three-manifold with a dynamically convex contact form. However, we did not show that this cylindrical contact homology is an invariant of the contact structure. In the present paper, we define ‘nonequivariant contact homology’ and ‘<math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>-equivariant contact homology’, both with integer coefficients, for a contact form on a closed manifold in any dimension with no contractible Reeb orbits. We prove that these contact homologies depend only on the contact structure. Our construction uses Morse–Bott theory and is related to the positive <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>-equivariant symplectic homology of Bourgeois-Oancea. However, instead of working with Hamiltonian Floer homology, we work directly in contact geometry, using families of almost complex structures. When cylindrical contact homology can also be defined, it agrees with the tensor product of the <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>-equivariant contact homology with <math>\n <semantics>\n <mi>Q</mi>\n <annotation>${\\mathbb {Q}}$</annotation>\n </semantics></math>. We also present examples showing that the <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>-equivariant contact homology contains interesting torsion information. In a subsequent paper, we will use obstruction bundle gluing to extend the above story to closed three-manifolds with dynamically convex contact forms, which in particular will prove that their cylindrical contact homology has a lift to integer coefficients which depends only on the contact structure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In a previous paper, we showed that the original definition of cylindrical contact homology, with rational coefficients, is valid on a closed three-manifold with a dynamically convex contact form. However, we did not show that this cylindrical contact homology is an invariant of the contact structure. In the present paper, we define ‘nonequivariant contact homology’ and ‘ S 1 $S^1$ -equivariant contact homology’, both with integer coefficients, for a contact form on a closed manifold in any dimension with no contractible Reeb orbits. We prove that these contact homologies depend only on the contact structure. Our construction uses Morse–Bott theory and is related to the positive S 1 $S^1$ -equivariant symplectic homology of Bourgeois-Oancea. However, instead of working with Hamiltonian Floer homology, we work directly in contact geometry, using families of almost complex structures. When cylindrical contact homology can also be defined, it agrees with the tensor product of the S 1 $S^1$ -equivariant contact homology with Q ${\mathbb {Q}}$ . We also present examples showing that the S 1 $S^1$ -equivariant contact homology contains interesting torsion information. In a subsequent paper, we will use obstruction bundle gluing to extend the above story to closed three-manifolds with dynamically convex contact forms, which in particular will prove that their cylindrical contact homology has a lift to integer coefficients which depends only on the contact structure.

分享
查看原文
超紧接触形式的S 1$ S^1$ -等变接触同调
在上一篇文章中,我们证明了具有有理系数的圆柱接触同调的原始定义在具有动态凸接触形式的封闭三流形上是有效的。然而,我们没有证明这种圆柱接触同调是接触结构的不变量。本文对无可缩Reeb轨道的任意维闭流形上的接触形式,定义了具有整数系数的“非等变接触同调”和“S 1$ S^1$ -等变接触同调”。我们证明了这些接触同调只依赖于接触结构。我们的构造使用Morse-Bott理论,并与bourgeois - oanca的正S 1$ S^1$ -等变辛同调有关。然而,我们没有使用哈密顿弗洛尔同调,而是直接使用接触几何,使用几乎复杂的结构族。当柱面接触同调也可以定义时,它符合s1 $S^1$与Q ${\mathbb {Q}}$的等变接触同调的张量积。我们还给出了一些例子,证明S 1$ S^1$ -等变接触同调包含有趣的扭转信息。在后续的论文中,我们将利用阻塞束胶合将上述故事推广到具有动态凸接触形式的封闭三流形,并特别证明了它们的圆柱接触同调对仅依赖于接触结构的整数系数有提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信