Effect of Rotation Friction Ratio on the Power Extraction Performance of a Passive Rotation VAWT

IF 0.9 Q4 ENGINEERING, MECHANICAL
Jianyang Zhu, Chang Tian
{"title":"Effect of Rotation Friction Ratio on the Power Extraction Performance of a Passive Rotation VAWT","authors":"Jianyang Zhu, Chang Tian","doi":"10.1155/2019/6580345","DOIUrl":null,"url":null,"abstract":"This paper performs a systematic numerical study to investigate the effect of rotation friction ratio on the power extraction performance of a passive rotation H-type vertical axis wind turbine (H-VAWT). In contrast to the previous literature, the present work does not impose rotation velocity on the turbine, and the rotation friction ratio which reflects the effect of external load characteristics on the turbine is introduced to the governing equation of the turbine. During each iteration, the rotation velocity of the turbine is computed after having determined the aerodynamic torque exerted on the blade of the turbine. This is more consistent with the actual working environment of the H-VAWT. A novel numerical coupling model was developed to simulate the interaction between the fluid and the passive rotation of the H-VAWT; then, the power extraction performance of the turbine with different rotation friction ratio was systematically analyzed. The results demonstrate that the power extraction performance of H-VAWT will be enhanced when the H-VAWT has appropriate rotation friction ratio. It is also found that the flow separation induced by large angle of attack is alleviated essentially if the H-VAWT has appropriate rotation friction ratio, which makes the H-VAWT have better energy extraction performance.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6580345","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6580345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

This paper performs a systematic numerical study to investigate the effect of rotation friction ratio on the power extraction performance of a passive rotation H-type vertical axis wind turbine (H-VAWT). In contrast to the previous literature, the present work does not impose rotation velocity on the turbine, and the rotation friction ratio which reflects the effect of external load characteristics on the turbine is introduced to the governing equation of the turbine. During each iteration, the rotation velocity of the turbine is computed after having determined the aerodynamic torque exerted on the blade of the turbine. This is more consistent with the actual working environment of the H-VAWT. A novel numerical coupling model was developed to simulate the interaction between the fluid and the passive rotation of the H-VAWT; then, the power extraction performance of the turbine with different rotation friction ratio was systematically analyzed. The results demonstrate that the power extraction performance of H-VAWT will be enhanced when the H-VAWT has appropriate rotation friction ratio. It is also found that the flow separation induced by large angle of attack is alleviated essentially if the H-VAWT has appropriate rotation friction ratio, which makes the H-VAWT have better energy extraction performance.
旋转摩擦比对被动旋转VAWT功率提取性能的影响
本文对被动旋转H型垂直轴风力涡轮机(H-VAWT)的旋转摩擦比对功率提取性能的影响进行了系统的数值研究。与以前的文献相比,目前的工作没有将转速强加给涡轮机,并且将反映外部负载特性对涡轮机影响的旋转摩擦比引入到涡轮机的控制方程中。在每次迭代期间,在确定了施加在涡轮机叶片上的空气动力学扭矩之后,计算涡轮机的转速。这与H-VAWT的实际工作环境更加一致。建立了一个新的数值耦合模型来模拟H-VAWT的流体和被动旋转之间的相互作用;然后,系统地分析了不同旋转摩擦比下水轮机的功率提取性能。结果表明,当H-VAWT具有适当的旋转摩擦比时,H-VAWT的功率提取性能将得到提高。研究还发现,如果H-VAWT具有适当的旋转摩擦比,大攻角引起的流动分离基本上得到了缓解,这使得H-VAWT有更好的能量提取性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
10
审稿时长
25 weeks
期刊介绍: This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信