{"title":"Unsteady film cooling characteristics of the high-pressure turbine shroud with blade rotation in an aero-engine","authors":"Z. Kou, Zihao Bao, Guang-chao Li, Xunyan Yin","doi":"10.1515/tjj-2021-0032","DOIUrl":null,"url":null,"abstract":"Abstract Three-dimensional unsteady numerical simulations were conducted to investigate the detailed film cooling mechanism of the high-pressure turbine shroud with the first-stage turbine blade and guide vane for an aero-engine under the high-speed rotation of blades and rotor-stator interaction. The slip mesh was used to realize the relative motion between the rotating blade and the stationary turbine shroud. It is found that the coolant jet is alternately influenced by the hot mainstream, tip clearance leakage flow and leakage vortex due to the high rotational speed of blades. The film cooling characteristics of the turbine shroud significantly present an unsteady and periodic flow and heat transfer phenomenon. The insufficient cooling margin for film holes at the upstream of the blade leading edge can occur not only under high blowing ratios due to the coolant jet liftoff, but also at low blowing ratios due to the insufficient coolant flow rate as a result of the high exit pressure. A novel shroud cooling structure with coolant supply by the added throttle chamber is put forward, and expected to provide better thermal protection for the high-pressure turbine shroud near the leading edge of blades with no extra increase in the total mass flow rate of coolant.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2021-0032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Three-dimensional unsteady numerical simulations were conducted to investigate the detailed film cooling mechanism of the high-pressure turbine shroud with the first-stage turbine blade and guide vane for an aero-engine under the high-speed rotation of blades and rotor-stator interaction. The slip mesh was used to realize the relative motion between the rotating blade and the stationary turbine shroud. It is found that the coolant jet is alternately influenced by the hot mainstream, tip clearance leakage flow and leakage vortex due to the high rotational speed of blades. The film cooling characteristics of the turbine shroud significantly present an unsteady and periodic flow and heat transfer phenomenon. The insufficient cooling margin for film holes at the upstream of the blade leading edge can occur not only under high blowing ratios due to the coolant jet liftoff, but also at low blowing ratios due to the insufficient coolant flow rate as a result of the high exit pressure. A novel shroud cooling structure with coolant supply by the added throttle chamber is put forward, and expected to provide better thermal protection for the high-pressure turbine shroud near the leading edge of blades with no extra increase in the total mass flow rate of coolant.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.