Sidra Tul Muntaha, Ari Hokkanen, Mikko Harjanne, Matteo Cherchi, Pekka Suopajärvi, Petri Karvinen, Markku Pekkarinen, Matthieu Roussey, Timo Aalto
{"title":"3D Printed Lenses for Vertical Beam Collimation of Optical Phased Arrays.","authors":"Sidra Tul Muntaha, Ari Hokkanen, Mikko Harjanne, Matteo Cherchi, Pekka Suopajärvi, Petri Karvinen, Markku Pekkarinen, Matthieu Roussey, Timo Aalto","doi":"10.1089/3dp.2022.0314","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents the design, fabrication, and characterization of edge-coupled 1D optical phased arrays (OPAs) combined with collimating lenses. Our concept was tested with two OPAs having different collimation ranges. Both OPA designs have 3-μm waveguide spacing and the maximum beam steering range is about 30° based on wavelength tuning around 1550 nm. The first generation had 37 channels with 108 μm of waveguide array width and the second generation had 512 channels with 1.5 mm array width. As the array outputs are edge coupled, suitable lenses are required to collimate the beam vertically. We report the comparison between a commercially available straight cylindrical lens and custom 3D printed curved cylindrical lenses. In the experiments, we demonstrate 1D beam steering of the light outcoupled from the waveguide facets and collimated by these lenses and analyzed parameters such as Rayleigh range and beam divergence. These parameters are estimated to be 9.9 mm and 7.0 mrad (0.4°), respectively, for the commercial lens, whereas 40.1 mm and 3.5 mrad (0.2°) for the dedicated 3D printed lens, showing a clear improvement.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0314","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the design, fabrication, and characterization of edge-coupled 1D optical phased arrays (OPAs) combined with collimating lenses. Our concept was tested with two OPAs having different collimation ranges. Both OPA designs have 3-μm waveguide spacing and the maximum beam steering range is about 30° based on wavelength tuning around 1550 nm. The first generation had 37 channels with 108 μm of waveguide array width and the second generation had 512 channels with 1.5 mm array width. As the array outputs are edge coupled, suitable lenses are required to collimate the beam vertically. We report the comparison between a commercially available straight cylindrical lens and custom 3D printed curved cylindrical lenses. In the experiments, we demonstrate 1D beam steering of the light outcoupled from the waveguide facets and collimated by these lenses and analyzed parameters such as Rayleigh range and beam divergence. These parameters are estimated to be 9.9 mm and 7.0 mrad (0.4°), respectively, for the commercial lens, whereas 40.1 mm and 3.5 mrad (0.2°) for the dedicated 3D printed lens, showing a clear improvement.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.